Ashcroft, N. & Mermin, N. Strong State Physics (Holt-Saunders, 1976).
Abrikosov, A. A. Fundamentals of the Principle of Metals (Courier Dover Publications, 2017).
Mott, N. F. & Jones, H. The Principle of the Properties of Metals and Alloys (Dover Publications, 1958).
Mamin, H. J., Clarke, J. & Van Harlingen, D. J. Cost imbalance induced by a temperature gradient in superconducting aluminum. Phys. Rev. B 29, 3881–3890 (1984).
Meissner, W. Z. Das elektrische verhalten der metalle im temperaturgebiet des flüssigen heliums. Z. Ges. Kälte Industrie 34, 197 (1927).
Ginzburg, V. On the thermoelectric phenomena in superconductors. Zh. Eksp. Teor. Fiz. 14, 134 (1944).
Shelly, C. D., Matrozova, E. A. & Petrashov, V. T. Resolving thermoelectric ‘paradox’ in superconductors. Science 2, e1501250 (2016).
Guttman, G. D., Nathanson, B., Ben-Jacob, E. & Bergman, D. J. Thermoelectric and thermophase results in Josephson junctions. Phys. Rev. B 55, 12691–12700 (1997).
Giazotto, F., Heikkilä, T. T. & Bergeret, F. S. Very massive thermophase in ferromagnetic Josephson junctions. Phys. Rev. Lett. 114, 067001 (2015).
Kleeorin, Y., Meir, Y., Giazotto, F. & Dubi, Y. Massive tunable thermophase in superconductor – quantum dot – superconductor Josephson junctions. Sci. Rep. 6, 35116 (2016).
Smith, A. D., Tinkham, M. & Skocpol, W. J. New thermoelectric impact in tunnel junctions. Phys. Rev. B 22, 4346–4354 (1980).
Machon, P., Eschrig, M. & Belzig, W. Nonlocal thermoelectric results and nonlocal Onsager relations in a three-terminal proximity-coupled superconductor-ferromagnet system. Phys. Rev. Lett. 110, 047002 (2013).
Ozaeta, A., Virtanen, P., Bergeret, F. S. & Heikkilä, T. T. Predicted very massive thermoelectric impact in ferromagnet-superconductor junctions within the presence of a spin-splitting magnetic subject. Phys. Rev. Lett. 112, 057001 (2014).
Kolenda, S., Wolf, M. J. & Beckmann, D. Statement of thermoelectric currents in high-field superconductor-ferromagnet tunnel junctions. Phys. Rev. Lett. 116, 097001 (2016).
Bergeret, F. S., Silaev, M., Virtanen, P. & Heikkilä, T. T. Colloquium: nonequilibrium results in superconductors with a spin-splitting subject. Rev. Mod. Phys. 90, 041001 (2018).
Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).
Virtanen, P. & Heikkilä, T. T. Thermopower induced by a supercurrent in superconductor–normal-metal buildings. Phys. Rev. Lett. 92, 177004 (2004).
Blasi, G., Taddei, F., Arrachea, L., Carrega, M. & Braggio, A. Nonlocal thermoelectricity in a superconductor–topological-insulator–superconductor junction involved with a normal-metal probe: proof for helical edge states. Phys. Rev. Lett. 124, 227701 (2020).
Tan, Z. B. et al. Thermoelectric present in a graphene Cooper pair splitter. Nat. Commun. 12, 138 (2021).
Eom, J., Chien, C.-J. & Chandrasekhar, V. Section dependent thermopower in Andreev interferometers. Phys. Rev. Lett. 81, 437–440 (1998).
Jiang, Z. & Chandrasekhar, V. Quantitative measurements of the thermal resistance of Andreev interferometers. Phys. Rev. B 72, 020502(R) (2005).
Hofstetter, L., Csonka, S., Nygård, J. & Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).
Benenti, G., Casati, G., Saito, Ok. & Whitney, R. S. Basic elements of steady-state conversion of warmth to work on the nanoscale. Phys. Rep. 694, 1–124 (2017).
Campisi, M., Pekola, J. P. & Fazio, R. Nonequilibrium fluctuations in quantum warmth engines: idea, instance, and attainable strong state experiments. N. J. Phys. 17, 035012 (2015).
Bera, M. L., Lewenstein, M. & Bera, M. N. Attaining Carnot effectivity with quantum and nanoscale warmth engines. npj Quantum Inf. 7, 31 (2021).
Josefsson, M. et al. A quantum-dot warmth engine working near the thermodynamic effectivity limits. Nat. Nanotechnol. 13, 920–924 (2018).
Dubi, Y. & Di Ventra, M. Colloquium: warmth move and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011).
Ono, Ok., Shevchenko, S. N., Mori, T., Moriyama, S. & Nori, F. Analog of a quantum warmth engine utilizing a single-spin qubit. Phys. Rev. Lett. 125, 166802 (2020).
Marchegiani, G., Braggio, A. & Giazotto, F. Nonlinear thermoelectricity with electron-hole symmetric methods. Phys. Rev. Lett. 124, 106801 (2020).
Roddaro, S. et al. Big thermovoltage in single InAs nanowire field-effect transistors. Nano Lett. 13, 3638–3642 (2013).
Soleimani, Z., Zoras, S., Ceranic, B., Shazad, S. & Cui, Y. A assessment on current developments of thermoelectric supplies for room-temperature functions. Maintain. Vitality Technol. Assess. 37, 100604 (2020).
Mani, P., Nakpathomkun, N. & Linke, H. Intrinsic Seebeck coefficient of quantum dots. J. Electron. Mater. 38, 1163–1165 (2009).
Prete, D. et al. Thermoelectric conversion at 30 Ok in InAs/InP nanowire quantum dots. Nano Lett. 19, 3033–3039 (2019).
Marchegiani, G., Braggio, A. & Giazotto, F. Section-tunable thermoelectricity in a Josephson junction. Phys. Rev. Res. 2, 043091 (2020).
Marchegiani, G., Braggio, A. & Giazotto, F. Superconducting nonlinear thermoelectric warmth engine. Phys. Rev. B 101, 214509 (2020).
Giazotto, F., Paolucci, F., Braggio, A., Marchegiani, G. & Germanese G. Superconducting bipolar thermoelectric reminiscence and technique for writing a superconducting bipolar thermoelectric reminiscence. Italian patent: 102021000032042 (2021).
Kemppinen, A. et al. Suppression of the vital present of a balanced superconducting quantum interference system. Appl. Phys. Lett. 92, 052110 (2008).
Fornieri, A., Blanc, C., Bosisio, R., D’Ambrosio, S. & Giazotto, F. Nanoscale part engineering of thermal transport with a Josephson warmth modulator. Nat. Nanotechnol. 11, 258–262 (2016).
Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Alternatives for mesoscopics in thermometry and refrigeration: physics and functions. Rev. Mod. Phys. 78, 217 (2006).
Fornieri, A. & Giazotto, F. In the direction of phase-coherent caloritronics in superconducting circuits. Nat. Nanotechnol. 12, 944–952 (2017).
Aronov, A. G. & Spivak, B. Z. Photoeffect in a Josephson junction. JETP Lett. 22, 101–102 (1975).
Gershenzon, M. E. & Falei, M. I. Absolute damaging resistance of a tunnel contact between superconductors with a nonequilibrium quasiparticle distribution perform. JETP Lett. 44, 682–686 (1986).
Bogoliubov, N. N. Lectures on Quantum Statistics (Gordon and Breach, 1970).
Strocchi, F. Symmetry Breaking (Springer, 2008).
Timofeev, A. V. et al. Recombination-limited power rest in a Bardeen-Cooper-Schrieffer superconductor. Phys. Rev. Lett. 102, 017003 (2009).
Ladd, T. D. et al. Quantum computer systems. Nature 464, 45–53 (2010).
Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 6, 875–891 (2021).
Polini, M. et al. Supplies and units for basic quantum science and quantum applied sciences. Preprint at arXiv https://doi.org/10.48550/arXiv.2201.09260 (2022).
Braginski, A. I. Superconductor electronics: standing and outlook. J. Supercond. Nov. Magn. 32, 23–44 (2019).
Heikkilä, T. T. et al. Thermoelectric radiation detector based mostly on superconductor-ferromagnet methods. Phys. Rev. Appl. 10, 034053 (2018).
Martinez-Perez, M. J. & Giazotto, F. A quantum diffractor for thermal flux. Nat. Commun. 5, 3579 (2014).
Tinkham, M. Introduction to Superconductivity (McGraw-Hill,1996).
Dynes, R. C., Garno, J. P., Hertel, G. B. & Orlando, T. P. Tunneling research of superconductivity close to the metal-insulator transition. Phys. Rev. Lett. 53, 2437–2440 (1984).
Shapiro, S., Smith, P. H., Nicol, J., Miles, J. L. & Robust, P. F. Superconductivity and electron tunneling. IBM J. Res. Dev. 6, 34–43 (1962).