Bond AM, Ming GL, Music H. Grownup mammalian neural stem cells and neurogenesis: 5 a long time later. Cell Stem Cell. 2015;17(4):385–95.
Piltti KM, Funes GM, Avakian SN, Salibian AA, Huang KI, Carta Ok, et al. Growing human neural stem cell transplantation dose alters oligodendroglial and neuronal differentiation after spinal twine damage. Stem Cell Reviews. 2017;8(6):1534–48.
Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells assist survival, proliferation, and neuronal differentiation of transplanted grownup ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27(9):2185–95.
Liu Z, Tang M, Zhao J, Chai R, Kang J. Wanting into the long run: towards superior 3D biomaterials for stem-cell-based regenerative drugs. Adv Mater. 2018;30(17):1705388.
Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Solar J, et al. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells via Wnt/β-catenin signaling for spinal twine damage restore. Biomaterials. 2018;183:114–27.
Watanabe Ok, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci. 2005;8(3):288–96.
Xiao M, Li X, Music Q, Zhang Q, Lazzarino M, Cheng G, et al. A completely 3D interconnected graphene-carbon nanotube net permits the examine of glioma infiltration in bioengineered 3D cortex-like networks. Adv Mater. 2018;30(52): e1806132.
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, et al. Neural stem cell differentiation into mature neurons: mechanisms of regulation and biotechnological purposes. Biotechnol Adv. 2018;36(7):1946–70.
Li Y, Xiao Y, Liu C. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev. 2017;117(5):4376–421.
Baker BM, Chen CS. Deconstructing the third dimension: how 3D tradition microenvironments alter mobile cues. J Cell Sci. 2012;125(Pt 13):3015–24.
Petrie RJ, Yamada KM. At the forefront of three-dimensional cell migration. J Cell Sci. 2012;125(Pt 24):5917–26.
Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater. 2015;14(12):1262–8.
Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A. Bodily cues of biomaterials information stem cell differentiation destiny. Chem Rev. 2013;113(5):3297–328.
Lee J, Abdeen AA, Kim AS, Kilian KA. Affect of biophysical parameters on sustaining the mesenchymal stem cell phenotype. ACS Biomater Sci Eng. 2015;1(4):218–26.
Roca-Cusachs P, Iskratsch T, Sheetz MP. Discovering the weakest hyperlink: exploring integrin-mediated mechanical molecular pathways. J Cell Sci. 2012;125(Pt 13):3025–38.
Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, et al. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell conduct through an integrin-mediated mechanism. Biomaterials. 2015;53:251–64.
Yin S, Liu J, Kang Y, Lin Y, Li D, Shao L. Interactions of nanomaterials with ion channels and associated mechanisms. Br J Pharmacol. 2019;176(19):3754–74.
Kang Y, Liu J, Music B, Feng X, Ou L, Wei L, et al. Potential hyperlinks between cytoskeletal disturbances and electroneurophysiological dysfunctions induced within the central nervous system by inorganic nanoparticles. Cell Physiol Biochem. 2016;40(6):1487–505.
Lin CX, Yang SY, Gu JL, Meng J, Xu HY, Cao JM. The acute poisonous results of silver nanoparticles on myocardial transmembrane potential, INa and IK1 channels and coronary heart rhythm in mice. Nanotoxicology. 2017;11(6):827–37.
Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos Ok. Prospects and challenges of graphene in biomedical purposes. Adv Mater. 2013;25(16):2258–68.
Li N, Zhang Q, Gao S, Music Q, Huang R, Wang L, et al. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep. 2013;3:1604.
Aydin T, Gurcan C, Taheri H, Yilmazer A. Graphene primarily based supplies in neural tissue regeneration. Adv Exp Med Biol. 2018;1107:129–42.
Guo R, Li J, Chen C, Xiao M, Liao M, Hu Y, et al. Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B Biointerfaces. 2021;200: 111590.
Fabbro A, Prato M, Ballerini L. Carbon nanotubes in neuroregeneration and restore. Adv Drug Deliv Rev. 2013;65(15):2034–44.
Lee SJ, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng. 2018;15(1): 016018.
Pampaloni NP, Lottner M, Giugliano M, Matruglio A, D’Amico F, Prato M, et al. Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nat Nanotechnol. 2018;13(8):755–64.
Rauti R, Lozano N, Leon V, Scaini D, Musto M, Rago I, et al. Graphene oxide nanosheets reshape synaptic operate in cultured mind networks. ACS Nano. 2016;10(4):4459–71.
Barrejon M, Rauti R, Ballerini L, Prato M. Chemically cross-linked carbon nanotube movies engineered to manage neuronal signaling. ACS Nano. 2019;13(8):8879–89.
Fabbro A, Villari A, Laishram J, Scaini D, Toma FM, Turco A, et al. Spinal twine explants use carbon nanotube interfaces to boost neurite outgrowth and to fortify synaptic inputs. ACS Nano. 2012;6(3):2041–55.
Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, et al. Interfacing neurons with carbon nanotubes: electrical sign switch and synaptic stimulation in cultured mind circuits. J Neurosci. 2007;27(26):6931–6.
Driscoll N, Richardson AG, Maleski Ok, Anasori B, Adewole O, Lelyukh P, et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano. 2018;12(10):10419–29.
Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, et al. Floor modifications for the efficient dispersion of carbon nanotubes in solvents and polymers. Carbon. 2012;50(1):3–33.
Lee HP, Gaharwar AK. Mild-responsive inorganic biomaterials for biomedical purposes. Adv Sci (Weinh). 2020;7(17):2000863.
Hantanasirisakul Ok, Gogotsi Y. Digital and optical properties of 2D transition metallic carbides and nitrides (MXenes). Adv Mater. 2018;30(52):1804779.
Lin H, Wang X, Yu L, Chen Y, Shi J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017;17(1):384–91.
Dai C, Chen Y, Jing X, Xiang L, Yang D, Lin H, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for a number of imaging-guided photothermal tumor ablation. ACS Nano. 2017;11(12):12696–712.
Lin H, Wang Y, Gao S, Chen Y, Shi J. Theranostic 2D tantalum carbide (MXene). Adv Mater. 2018;30(4):1703284.
Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, et al. Natural-base-driven intercalation and delamination for the manufacturing of functionalized titanium carbide nanosheets with superior photothermal therapeutic efficiency. Angew Chem Int Ed Engl. 2016;55(47):14569–74.
Lin H, Gao S, Dai C, Chen Y, Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc. 2017;139(45):16235–47.
Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, et al. Floor modified Ti3C2 MXene nanosheets for tumor concentrating on photothermal/photodynamic/chemo synergistic remedy. ACS Appl Mater Interfaces. 2017;9(46):40077–86.
Rakhi RB, Nayak P, Xia C, Alshareef HN. Novel amperometric glucose biosensor primarily based on MXene nanocomposite. Sci Rep. 2016;6:36422.
Hroncekova S, Bertok T, Hires M, Jane E, Lorencova L, Vikartovska A, et al. Ultrasensitive Ti3C2TX MXene/Chitosan nanocomposite-based amperometric biosensor for detection of potential prostate most cancers marker in urine samples. Processes (Basel). 2020;8(5):580.
Cho YW, Park JH, Lee KH, Lee T, Luo Z, Kim TH. Current advances in nanomaterial-modified electrical platforms for the detection of dopamine in dwelling cells. Nano Converg. 2020;7(1):40.
Ramanavicius S, Ramanavicius A. Progress and insights within the software of MXenes as new 2D nano-materials appropriate for biosensors and biofuel cell design. Int J Mol Sci. 2020;21(23).
Tran NM, Ta QTH, Noh J-S. rGO/Ti3C2Tx heterostructures for the environment friendly, room-temperature detection of a number of poisonous gases. Mater Chem Phys. 2021;273.
Rasool Ok, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y. Environment friendly antibacterial membrane primarily based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep. 2017;7(1):1598.
Rasool Ok, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA. Antibacterial exercise of Ti(3)C(2)Tx MXene. ACS Nano. 2016;10(3):3674–84.
My Tran N, Thanh Hoai Ta Q, Noh J-S. Uncommon synthesis of safflower-shaped TiO2/Ti3C2 heterostructures initiated from two-dimensional Ti3C2 MXene. Appl Floor Sci. 2021;538.
My Tran N, Thanh Hoai Ta Q, Sreedhar A, Noh J-S. Ti3C2Tx MXene taking part in as a powerful methylene blue adsorbent in wastewater. Appl Floor Sci. 2021;537.
Xue Q, Zhang H, Zhu M, Pei Z, Li H, Wang Z, et al. Photoluminescent Ti3 C2 MXene quantum dots for multicolor mobile imaging. Adv Mater. 2017;29(15).
Music M, Pang SY, Guo F, Wong MC, Hao J. Fluoride-free 2D niobium carbide MXenes as secure and biocompatible nanoplatforms for electrochemical biosensors with ultrahigh sensitivity. Adv Sci (Weinh). 2020;7(24):2001546.
Huang Ok, Li Z, Lin J, Han G, Huang P. Correction: two-dimensional transition metallic carbides and nitrides (MXenes) for biomedical purposes. Chem Soc Rev. 2018;47(17):6889.
Fu Q, Zhu R, Music J, Yang H, Chen X. Photoacoustic imaging: distinction brokers and their biomedical purposes. Adv Mater. 2018.
Huang Ok, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metallic carbides and nitrides (MXenes) for biomedical purposes. Chem Soc Rev. 2018;47(14):5109–24.
Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical purposes: present advances and challenges forward. Adv Sci (Weinh). 2018;5(10):1800518.
Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial exercise of graphite, graphite oxide, graphene oxide, and lowered graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971–80.
Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Selling position of MXene nanosheets in biomedical sciences: therapeutic and biosensing improvements. Adv Healthc Mater. 2019;8(1): e1801137.
Yu X, Cai X, Cui H, Lee SW, Yu XF, Liu B. Fluorine-free preparation of titanium carbide MXene quantum dots with excessive near-infrared photothermal performances for most cancers remedy. Nanoscale. 2017;9(45):17859–64.
Karlsson LH, Birch J, Halim J, Barsoum MW, Persson PO. Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 2015;15(8):4955–60.
Liu H, Duan C, Yang C, Shen W, Wang F, Zhu Z. A novel nitrite biosensor primarily based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens Actuators, B Chem. 2015;218:60–6.
Wu W, Ge H, Zhang L, Lei X, Yang Y, Fu Y, et al. Evaluating the cytotoxicity of Ti3C2 MXene to neural stem cells. Chem Res Toxicol. 2020;33(12):2953–62.
Vural M, Zhu H, Pena-Francesch A, Jung H, Allen BD, Demirel MC. Self-assembly of topologically networked protein-Ti3C2Tx MXene composites. ACS Nano. 2020;14(6):6956–67.
Guo R, Xiao M, Zhao W, Zhou S, Hu Y, Liao M, et al. 2D Ti3C2TxMXene {couples} electrical stimulation to advertise proliferation and neural differentiation of neural stem cells. Acta Biomater. 2022;139:105–17.
Moody WJ, Bosma MM. Ion channel growth, spontaneous exercise, and activity-dependent growth in nerve and muscle cells. Physiol Rev. 2005;85(3):883–941.
Fields RD. Results of ion channel exercise on growth of dorsal root ganglion neurons. J Neurobiol. 1998;37(1):158–70.
Baines RA, Pym EC. Determinants {of electrical} properties in growing neurons. Semin Cell Dev Biol. 2006;17(1):12–9.
Brini M, Cali T, Ottolini D, Carafoli E. Neuronal calcium signaling: operate and dysfunction. Cell Mol Life Sci. 2014;71(15):2787–814.
Arie Y, Iketani M, Takamatsu Ok, Mikoshiba Ok, Goshima Y, Takei Ok. Developmental modifications within the regulation of calcium-dependent neurite outgrowth. Biochem Biophys Res Commun. 2009;379(1):11–5.
Gasperini RJ, Pavez M, Thompson AC, Mitchell CB, Hardy H, Younger KM, et al. How does calcium work together with the cytoskeleton to manage development cone motility throughout axon pathfinding? Mol Cell Neurosci. 2017;84:29–35.
Zhao QR, Lu JM, Li ZY, Mei YA. Neuritin promotes neurite and backbone development in rat cerebellar granule cells through L-type calcium channel-mediated calcium inflow. J Neurochem. 2018;147(1):40–57.
Li S, Tuft B, Xu L, Polacco M, Clarke JC, Guymon CA, et al. Intracellular calcium and cyclic nucleotide ranges modulate neurite steerage by microtopographical substrate options. J Biomed Mater Res A. 2016;104(8):2037–48.
Hegarty JL, Kay AR, Inexperienced SH. Trophic assist of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+]i inside a set vary. J Neurosci. 1997;17(6):1959–70.
Adams DJ, Hill MA. Potassium channels and membrane potential within the modulation of intracellular calcium in vascular endothelial cells. J Cardiovasc Electrophysiol. 2004;15(5):598–610.
Cerbai E, Pino R, Sartiani L, Mugelli A. Affect of postnatal-development on I(f) incidence and properties in neonatal rat ventricular myocytes. Cardiovasc Res. 1999;42(2):416–23.
Guo R, Zhang S, Xiao M, Qian F, He Z, Li D, et al. Accelerating bioelectric useful growth of neural stem cells by graphene coupling: implications for neural interfacing with conductive supplies. Biomaterials. 2016;106:193–204.
Bahrey HL, Moody WJ. Voltage-gated currents, dye and electrical coupling within the embryonic mouse neocortex. Cereb Cortex. 2003;13(3):239–51.
Owens DF, Boyce LH, Davis MB, Kriegstein AR. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci. 1996;16(20):6414–23.
Xiao M, Ulloa Severino FP, Iseppon F, Cheng G, Torre V, Tang M. 3D free-standing ordered graphene community geometrically regulates neuronal development and community formation. Nano Lett. 2020;20(10):7043–51.
Ulloa Severino FP, Ban J, Music Q, Tang M, Bianconi G, Cheng G, et al. The position of dimensionality in neuronal community dynamics. Sci Rep. 2016;6:29640.
Tang M, Music Q, Li N, Jiang Z, Huang R, Cheng G. Enhancement {of electrical} signaling in neural networks on graphene movies. Biomaterials. 2013;34(27):6402–11.
Li N, Zhang X, Music Q, Su R, Zhang Q, Kong T, et al. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in tradition by graphene substrates. Biomaterials. 2011;32(35):9374–82.