Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by sturdy coupling to hoover fields. Science 373, eabd0336 (2021).
Basov, D., Fogler, M. & De Abajo, F. J. G. Polaritons in van der Waals supplies. Science 354, 6309 (2016).
Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489 (2010).
Sanvitto, D. & Kéna-Cohen, S. The street in direction of polaritonic units. Nat. Mater. 15, 1061–1073 (2016).
Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron–phonon coupling and its affect on superconductivity. Sci. Adv. 4, eaau6969 (2018).
Ashida, Y. et al. Quantum electrodynamic management of matter: cavity-enhanced ferroelectric section transition. Phys. Rev. X 10, 041027 (2020).
Thomas, A. et al. Massive enhancement of ferromagnetism beneath a collective sturdy coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure units. Science 363, 6428 (2019).
Liu, S. et al. Direct statement of magnon–phonon sturdy coupling in two-dimensional antiferromagnet at excessive magnetic fields. Phys. Rev. Lett. 127, 097401 (2021).
Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 583, 785–789 (2020).
Hwangbo, Ok. et al. Extremely anisotropic excitons and a number of phonon certain states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660 (2021).
Wang, X. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat. Mater. 20, 964–970 (2021).
Belvin, C. A. et al. Exciton-driven antiferromagnetic steel in a correlated van der Waals insulator. Nat. Commun. 12, 4837 (2021).
Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic floor state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).
Kim, S. Y. et al. Cost-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).
Gnatchenko, S., Kachur, I., Piryatinskaya, V., Vysochanskii, Y. M. & Gurzan, M. Exciton–magnon construction of the optical absorption spectrum of antiferromagnetic MnPS3. Low. Temp. Phys. 37, 144–148 (2011).
Kudlacik, D. et al. Exciton and exciton–magnon photoluminescence within the antiferromagnet CuB2O4. Phys. Rev. B 102, 035128 (2020).
Tartakovskii, A. et al. Rest bottleneck and its suppression in semiconductor microcavities. Phys. Rev. B 62, R2283 (2000).
Virgili, T. et al. Ultrafast polariton leisure dynamics in an natural semiconductor microcavity. Phys. Rev. B 83, 245309 (2011).
Kim, Ok. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 1–9 (2019).
Zasedatelev, A. V. et al. A room-temperature natural polariton transistor. Nat. Photonics 13, 378–383 (2019).
Gu, J. et al. Enhanced nonlinear interplay of polaritons through excitonic Rydberg states in monolayer WSe2. Nat. Commun. 12, 1–7 (2021).
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
Afanasiev, D. et al. Controlling the anisotropy of a van der Waals antiferromagnet with gentle. Sci. Adv. 7, eabf3096 (2021).
Birowska, M., Junior, P. E. F., Fabian, J. & Kunstmann, J. Massive exciton binding energies in MnPS3 as a case research of a van der Waals layered magnet. Phys. Rev. B 103, L121108 (2021).
Lane, C. & Zhu, J.-X. Thickness dependence of digital construction and optical properties of a correlated van der waals antiferromagnetic NiPS3 skinny movie. Phys. Rev. B 102, 075124 (2020).
Jungwirth, T. et al. The a number of instructions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).