Verma SK, Panda PK, Kumari P, Patel P, Arunima A, Jha E, et al. Figuring out components for the nano-biocompatibility of cobalt oxide nanoparticles: proximal discrepancy in intrinsic atomic interactions at differential vicinage. Inexperienced Chem. 2021;23:3439–58.
Lu C, Han L, Wang J, Wan J, Track G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev. 2021;50:8102–46.
Chen Y-T, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing utilizing magnetic particle detection methods. Sensors. 2017;17(10):2300.
Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide primarily based nanoparticles for multimodal imaging and magnetoresponsive remedy. Chem Rev. 2015;115(19):10637–89.
Issadore D, Park YI, Shao H, Min C, Lee Okay, Liong M, et al. Magnetic sensing expertise for molecular analyses. Lab Chip. 2014;14:2385–97.
Neamtu M, Nadejde C, Hodoroaba V-D, Schneider RJ, Verestiuc L, Panne U. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic utility and evaluation of toxicity. Sci Rep. 2018;8:6278.
Mylkie Okay, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-coated magnetite nanoparticles for protein immobilization. Supplies (Basel). 2021;14(2):248.
Heydari Sheikh Hossein H, Jabbari I, Zarepour A, Zarrabi A, Ashrafizadeh M, Taherian A, et al. Functionalization of magnetic nanoparticles by folate as potential MRI distinction agent for breast most cancers diagnostics. Molecules. 2020;25(18):4053.
Zhao S, Yu X, Qian Y, Chen W, Shen J. Multifunctional magnetic iron oxide nanoparticles: a sophisticated platform for most cancers theranostics. Theranostics. 2020;10(14):6278–309.
Zhong J, Rösch EL, Viereck T, Schilling M, Ludwig F. Towards fast and delicate detection of SARS-CoV-2 with functionalized magnetic nanoparticles. ACS Sens. 2021;6(3):976–84.
Abarca-Cabrera L, Fraga-García P, Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater Res. 2021;25:12.
Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, et al. Magnetic nanoparticles: from design and synthesis to actual world functions. Nanomaterials. 2017;7(9):243.
Majidi S, ZeinaliSehrig F, Farkhani SM, SoleymaniGoloujeh M, Akbarzadeh A. Present strategies for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44:722–34.
Khizar S, Ahmad NM, Zine N, Jaffrezic-Renault N, Errachid-el-salhi A, Elaissari A. Magnetic nanoparticles: from synthesis to theranostic functions. ACS Appl Nano Mater. 2021;4(5):4284–306.
Patel P, Nandi A, Jha E, Sinha A, Mohanty S, Panda PK, et al. Magnetic nanoparticles: fabrication, characterization, properties, and utility for atmosphere sustainability. In: Magnetic nanoparticle-based hybrid supplies. London: Elsevier; 2021. p. 33–64.
Lee H, Shin T-H, Cheon J, Weissleder R. Latest developments in magnetic diagnostic methods. Chem Rev. 2015;115(19):10690–724.
Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, safety, functionalization, and utility. Angew Chem Int Ed. 2007;46(8):1222–44.
Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for focused drug supply and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.
Maleki A, Niksefat M, Rahimi J, Hajizadeh Z. Design and preparation of Fe3O4@PVA polymeric magnetic nanocomposite movie and floor coating by sulfonic acid through in situ strategies and analysis of its catalytic efficiency within the synthesis of dihydropyrimidines. BMC Chem. 2019;13(1):19.
Shigeoka D, Yamazaki T, Ishikawa T, Miike Okay, Fujiwara Okay, Ide T, et al. Functionalization and magnetic rest of ferrite nanoparticles for theranostics. IEEE Trans Magn. 2018;54(11):6100707.
Yalcin S, Gündüz U. Iron oxide-based polymeric magnetic nanoparticles for drug and gene supply: in vitro and in vivo functions in most cancers. In: Handbook of polymer and ceramic nanotechnology. Cham: Springer Worldwide Publishing; 2019. p. 1–22.
Sandler SE, Fellows B, Thompson MO. Finest practices for characterization of magnetic nanoparticles for biomedical functions. Anal Chem. 2019;91(22):14159–69.
Pellicer-Guridi R, Vogel MW, Reutens DC, Vegh V. In direction of final low frequency air-core magnetometer sensitivity. Sci Rep. 2017;7:2269.
Gaster RS, Xu L, Han S-J, Wilson RJ, Corridor DA, Osterfeld SJ, et al. Quantification of protein interactions and answer transport utilizing high-density GMR sensor arrays. Nat Nanotechnol. 2011;6:314–20.
Chung HJ, Castro CM, Im H, Lee H, Weissleder R. A magneto-DNA nanoparticle system for fast detection and phenotyping of micro organism. Nat Nanotechnol. 2013;8:369–75.
Kenning GG, Rodriguez R, Zotev VS, Moslemi A, Wilson S, Hawel L, et al. Detection of magnetically enhanced most cancers tumors utilizing SQUID magnetometry: a feasibility research. Rev Sci Instrum. 2005;76: 014303.
Issa B, Obaidat I, Albiss B, Haik Y. Magnetic nanoparticles: floor results and properties associated to biomedicine functions. Int J Mol Sci. 2013;14(11):21266–305.
Arun T, Verma SK, Panda PK, Joseyphus RJ, Jha E, Akbari-Fakhrabadi A, et al. Facile synthesized novel hybrid graphene oxide/cobalt ferrite magnetic nanoparticles primarily based floor coating materials inhibit bacterial secretion pathway for antibacterial impact. Mater Sci Eng C. 2019;104: 109932.
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical functions. Adv Healthc Mater. 2018;7(5):1700845.
Feng Q, Liu Y, Huang J, Chen Okay, Huang J, Xiao Okay. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with completely different sizes and coatings. Sci Rep. 2018;8:2082.
Sheel R, Kumari P, Panda PK, Jawed Ansari MD, Patel P, Singh S, et al. Molecular intrinsic proximal interplay infer oxidative stress and apoptosis modulated in vivo biocompatibility of P. niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environ Pollut. 2020;267: 115482.
Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, et al. Potential toxicity of iron oxide magnetic nanoparticles: a evaluation. Molecules. 2020;25(14):3159.
van Reenen A, de Jong AM, den Toonder JMJ, Prins MWJ. Built-in lab-on-chip biosensing methods primarily based on magnetic particle actuation—a complete evaluation. Lab Chip. 2014;14:1966–86.
Wilczewska AZ, Niemirowicz Okay, Markiewicz KH, Automotive H. Nanoparticles as drug supply methods. Pharmacol Rep. 2012;64(5):1020–37.
Arias L, Pessan J, Vieira A, Lima T, Delbem A, Monteiro D. Iron oxide nanoparticles for biomedical functions: a perspective on synthesis, medicine, antimicrobial exercise, and toxicity. Antibiotics. 2018;7(2):46.
Yallapu MM, Foy SP, Jain TK, Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug supply and magnetic resonance imaging functions. Pharm Res. 2010;27(11):2283–95.
Chircov C, Grumezescu AM, Holban AM. Magnetic particles for superior molecular prognosis. Supplies (Basel). 2019;12(13):2158.
Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, et al. Utility of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnol. 2020;18:62.
Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, et al. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev. 2019;48:5717–51.
de Dios AS, Díaz-García ME. Multifunctional nanoparticles: analytical prospects. Anal Chim Acta. 2010;666(1–2):1–22.
Sprint S, Balasubramaniam M, Sprint C, Pandhare J. Biotin-based pulldown assay to validate mRNA targets of mobile miRNAs. J Vis Exp. 2018;12(136):57786.
Gessner I, Fries JWU, Brune V, Mathur S. Magnetic nanoparticle-based amplification of microRNA detection in physique fluids for early illness prognosis. J Mater Chem B. 2021;9:9–22.
Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug supply and imaging functions. Nanoscale Res Lett. 2019;14:188.
Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale EN. Publication developments in drug supply and magnetic nanoparticles. Nanoscale Res Lett. 2019;14:164.
Hannon GJ. RNA interference. Nature. 2002;418:244–51.
Kim DH, Rossi JJ. Methods for silencing human illness utilizing RNA interference. Nat Rev Genet. 2007;8:173–84.
Hu B, Weng Y, Xia X, Liang X, Huang Y. Medical advances of siRNA therapeutics. J Gene Med. 2019;21(7): e3097.
Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: transferring from bench to clinic as subsequent technology medication. Mol Ther Nucleic Acids. 2017;8:132–43.
Setten RL, Rossi JJ, Han S. The present state and future instructions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.
Mishra DK, Balekar N, Mishra PK. Nanoengineered methods for siRNA supply: from goal evaluation to most cancers therapeutic efficacy. Drug Deliv Transl Res. 2017;7(2):346–58.
Fiszer A, Krzyzosiak WJ. Oligonucleotide-based methods to fight polyglutamine illnesses. Nucleic Acids Res. 2014;42(11):6787–810.
Dowaidar M, Abdelhamid HN, Hällbrink M, Zou X, Langel Ü. Graphene oxide nanosheets in advanced with cell penetrating peptides for oligonucleotides supply. Biochim Biophys Acta Gen Subj. 2017;1861(9):2334–41.
Boisguérin P, Deshayes S, Gait MJ, O’Donovan L, Godfrey C, Betts CA, et al. Supply of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev. 2015;87:52–67.
Ganjeifar B, Morshed SF. Focused Drug Supply in mind tumors-nanochemistry functions and advances. Curr Prime Med Chem. 2020;20(22):1202–23.
Yin PT, Pongkulapa T, Cho H-Y, Han J, Pasquale NJ, Rabie H, et al. Overcoming chemoresistance in most cancers through mixed microRNA therapeutics with anticancer medicine utilizing multifunctional magnetic core-shell nanoparticles. ACS Appl Mater Interfaces. 2018;10(32):26954–63.
Yin PT, Shah BP, Lee Okay-B. Mixed magnetic nanoparticle-based microRNA and hyperthermia remedy to boost apoptosis in mind most cancers cells. Small. 2014;10(20):4106–12.
Gessner I, Yu X, Jüngst C, Klimpel A, Wang L, Fischer T, et al. Selective seize and purification of microRNAs and intracellular proteins by antisense-vectorized magnetic nanobeads. Sci Rep. 2019;9:2069.
Do HD, Ménager C, Michel A, Seguin J, Korichi T, Dhotel H, et al. Improvement of theranostic cationic liposomes designed for image-guided supply of nucleic acid. Pharmaceutics. 2020;12(9):854.
Sosa-Acosta JR, Iriarte-Mesa C, Ortega GA, Díaz-García AM. DNA–iron oxide nanoparticles conjugates: practical magnetic nanoplatforms in biomedical functions. Prime Curr Chem. 2020;378:19–47.
Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, et al. Magnetically responsive hybrid nanoparticles for in vitro siRNA supply to breast most cancers cells. Mater Sci Eng C. 2019;99:1182–90.
Titze de Almeida S, Horst C, Soto-Sánchez C, Fernandez E, Titze de Almeida R. Supply of miRNA-targeted oligonucleotides within the rat striatum by magnetofection with Neuromag®. Molecules. 2018;23(7):1825.
Dowaidar M, Abdelhamid HN, Hällbrink M, Freimann Okay, Kurrikoff Okay, Zou X, et al. Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene supply. Sci Rep. 2017;7:9159.
Grabowska M, Grześkowiak BF, Szutkowski Okay, Wawrzyniak D, Głodowicz P, Barciszewski J, et al. Nano-mediated supply of double-stranded RNA for gene remedy of glioblastoma multiforme. PLoS ONE. 2019;14(3): e0213852.
Jin L, Wang Q, Chen J, Wang Z, Xin H, Zhang D. Environment friendly supply of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral most cancers cells. Pharmaceutics. 2019;11(11):615.
Bhattacharjee R, Nandi A, Mitra P, Saha Okay, Patel P, Jha E, et al. Theragnostic utility of nanoparticle and CRISPR towards food-borne multi-drug resistant pathogens. Mater In the present day Bio. 2022;15: 100291.
Bartel DP. MicroRNAs: goal recognition and regulatory capabilities. Cell. 2009;136(2):215–33.
Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in physique fluids—the combo of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467–77.
Gupta S, Panda PK, Hashimoto RF, Samal SK, Mishra S, Verma SK, et al. Dynamical modeling of miR-34a, miR-449a, and miR-16 reveals quite a few DDR signaling pathways regulating senescence, autophagy, and apoptosis in HeLa cells. Sci Rep. 2022;12:4911.
Nath A, Bhattacharjee R, Nandi A, Sinha A, Kar S, Manoharan N, et al. Phage delivered CRISPR-Cas system to fight multidrug-resistant pathogens in intestine microbiome. Biomed Pharmacother. 2022;151: 113122.
Chen Okay-H, Pan M-J, Jargalsaikhan Z, Ishdorj T-O, Tseng F-G. Improvement of surface-enhanced raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal most cancers. Biosensors. 2020;10(11):163.
Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, de la Guardia M. Latest advances in floor plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron. 2020;169: 112599.
Li F, Mei L, Zhan C, Mao Q, Yao M, Wang S, et al. Liquid hybridization and stable section detection: a extremely delicate and correct technique for microRNA detection in crops and animals. Int J Mol Sci. 2016;17(9):1457.
Cacheux J, Bancaud A, Leichlé T, Cordelier P. Technological challenges and future points for the detection of circulating microRNAs in sufferers with most cancers. Entrance Chem. 2019;7:815.
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in illness: newest findings relating to their function in prognosis and prognosis. Cells. 2020;9(2):276.
Johnson BN, Mutharasan R. Biosensor-based microRNA detection: methods, design, efficiency, and challenges. Analyst. 2014;139:1576–88.
Pogribny IP. MicroRNAs as biomarkers for medical research. Exp Biol Med. 2018;243(3):283–90.
Su D, Wu Okay, Saha R, Liu J, Wang J-P. Magnetic nanotechnologies for early most cancers diagnostics with liquid biopsies: a evaluation. J Most cancers Metastasis Deal with. 2020;2020(6):19.
Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in therapeutic implications of inorganic drug supply nano-platforms for most cancers. Int J Mol Sci. 2019;20(4):965.
Iyer SR, Xu S, Stains JP, Bennett CH, Lovering RM. Superparamagnetic iron oxide nanoparticles in musculoskeletal biology. Tissue Eng Half B Rev. 2017;23(4):373–85.
WHO-Cardiovascular Ailments. World Well being Group. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1. 2021.
Neuwelt A, Sidhu N, Hu C-AA, Mlady G, Eberhardt SC, Sillerud LO. Iron-based superparamagnetic nanoparticle distinction brokers for MRI of an infection and irritation. Am J Roentgenol. 2015;204(3):W302–13.
Vazquez-Prada KX, Lam J, Kamato D, Xu ZP, Little PJ, Ta HT. Focused molecular imaging of cardiovascular illnesses by iron oxide nanoparticles. Arterioscler Thromb Vasc Biol. 2021;41(2):601–13.
Tang J, Lobatto ME, Learn JC, Mieszawska AJ, Fayad ZA, Mulder WJM. Nanomedical theranostics in heart problems. Curr Cardiovasc Imaging Rep. 2012;5(1):19–25.
Wenzel D. Magnetic nanoparticles: novel choices for vascular restore? Nanomedicine. 2016;11(8):869–72.
Bietenbeck M, Engel S, Lamping S, Hansen U, Faber C, Ravoo BJ, et al. Functionalization of clinically accepted MRI distinction brokers for the supply of VEGF. Bioconj Chem. 2019;30(4):1042–7.
Atluri V, Jayant R, Pilakka-Kanthikeel S, Garcia G, Thangavel S, Yndart A, et al. Improvement of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 an infection. Int J Nanomed. 2016;11:4287–98.
Li W, Yalcin M, Bharali DJ, Lin Q, Godugu Okay, Fujioka Okay, et al. Pharmacokinetics, biodistribution, and anti-angiogenesis efficacy of diamino propane tetraiodothyroacetic acid-conjugated biodegradable polymeric nanoparticle. Sci Rep. 2019;9:9006.
Richards JMJ, Shaw CA, Lang NN, Williams MC, Semple SIK, MacGillivray TJ, et al. In vivo mononuclear cell monitoring utilizing superparamagnetic particles of iron oxide. Circ Cardiovasc Imaging. 2012;5(4):509–17.
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, et al. Latest advances in nanomaterials for remedy and prognosis for atherosclerosis. Adv Drug Deliv Rev. 2021;170:142–99.
Abdalla AME, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Present challenges of most cancers anti-angiogenic remedy and the promise of nanotherapeutics. Theranostics. 2018;8(2):533–48.
Dadfar SM, Roemhild Okay, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic functions. Adv Drug Deliv Rev. 2019;138:302–25.
George SJ, Baker AH. Gene switch to the vasculature. Mol Biotechnol. 2002;22:153–64.
Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann Okay, Plank C, et al. Enchancment of vascular perform by magnetic nanoparticle-assisted circumferential gene switch into the native endothelium. J Management Launch. 2016;241:164–73.
Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann Okay, Bloch W, et al. Vascular restore by circumferential cell remedy utilizing magnetic nanoparticles and tailor-made magnets. ACS Nano. 2016;10(1):369–76.
Flores AM, Ye J, Jarr Okay-U, Hosseini-Nassab N, Smith BR, Leeper NJ. Nanoparticle remedy for vascular illnesses. Arterioscler Thromb Vasc Biol. 2019;39(4):635–46.
Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The worldwide burden of neurological problems: translating proof into coverage. Lancet Neurol. 2020;19(3):255–65.
Ylä-Herttuala S, Baker AH. Cardiovascular gene remedy: previous, current, and future. Mol Ther. 2017;25(5):1095–106.
Cannatà A, Ali H, Sinagra G, Giacca M. Gene remedy for the center classes realized and future views. Circ Res. 2020;126(10):1394–414.
Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. International, regional, and nationwide burden of neurological problems, 1990–2016: a scientific evaluation for the International Burden of Illness Research 2016. Lancet Neurol. 2019;18:459–80.
Obeso JA, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s illness. N Engl J Med. 2001;345(13):956–63.
Deisseroth Okay. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18:1213–25.
Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, et al. Noninvasive deep mind stimulation through temporally interfering electrical fields. Cell. 2017;169(6):1029–41.
Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial centered ultrasound modulates the exercise of main somatosensory cortex in people. Nat Neurosci. 2014;17:322–9.
Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A. Utility of infrared mild for in vivo neural stimulation. J Biomed Decide. 2005;10(6): 064003.
Carvalho-de-Souza JL, Treger JS, Dang B, Kent SBH, Pepperberg DR, Bezanilla F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 2015;86(1):207–17.
Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Close to-infrared deep mind stimulation through upconversion nanoparticle-mediated optogenetics. Science. 2018;359(6376):679–84.
Soto-Sánchez C, Martínez-Navarrete G, Humphreys L, Puras G, Zarate J, Pedraz JL, et al. Enduring high-efficiency in vivo transfection of neurons with non-viral magnetoparticles within the rat visible cortex for optogenetic functions. Nanomed Nanotechnol Biol Med. 2015;11(4):835–43.
Wen X, Wang Okay, Zhao Z, Zhang Y, Solar T, Zhang F, et al. Mind-targeted supply of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS ONE. 2014;9: e106652.
Ahlawat J, Guillama Barroso G, Masoudi Asil S, Alvarado M, Armendariz I, Bernal J, et al. Nanocarriers as potential drug supply candidates for overcoming the blood–mind barrier: challenges and prospects. ACS Omega. 2020;5(22):12583–95.
Pardridge WM. Blood–mind barrier and supply of protein and gene therapeutics to mind. Entrance Getting older Neurosci. 2020;11:373.
Daneman R, Prat A. The blood–mind barrier. Chilly Spring Harb Perspect Biol. 2015;7(1): a020412.
Guiot C, Zullino S, Priano L, Cavalli R. The physics of drug-delivery throughout the blood–mind barrier. Ther Deliv. 2016;7(3):153–6.
Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, et al. Bodily power for drug supply; poration, focus and activation. Adv Drug Deliv Rev. 2014;71:98–114.
Appelboom G, Detappe A, LoPresti M, Kunjachan S, Mitrasinovic S, Goldman S, et al. Stereotactic modulation of blood–mind barrier permeability to boost drug supply. Neuro Oncol. 2016;18(12):1601–9.
Dilnawaz F, Sahoo SK. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov In the present day. 2015;20(10):1256–64.
Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, et al. Magnetically guided central nervous system supply and toxicity analysis of magneto-electric nanocarriers. Sci Rep. 2016;6:25309.
Kaushik A, Jayant RD, Sagar V, Nair M. The potential of magneto-electric nanocarriers for drug supply. Professional Opin Drug Deliv. 2014;11(10):1635–46.
Tabatabaei SN, Girouard H, Carret A-S, Martel S. Towards nonsystemic supply of therapeutics throughout the blood–mind barrier. Nanomedicine. 2015;10(14):2129–31.
Thomsen LB, Thomsen MS, Moos T. Focused drug supply to the mind utilizing magnetic nanoparticles. Ther Deliv. 2015;6(10):1145–55.
Lu X, Zhang Y, Wang L, Li G, Gao J, Wang Y. Improvement of l-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood mind barrier crossing and ischemic stroke therapy. Drug Deliv. 2021;28(1):380–9.
Liu H-L, Yang H-W, Hua M-Y, Wei Okay-C. Enhanced therapeutic agent supply by magnetic resonance imaging–monitored centered ultrasound blood–mind barrier disruption for mind tumor therapy: an outline of the present preclinical standing. Neurosurg Focus. 2012;32(1):E4.
Qiu Y, Tong S, Zhang L, Sakurai Y, Myers DR, Hong L, et al. Magnetic forces allow managed drug supply by disrupting endothelial cell–cell junctions. Nat Commun. 2017;8:15594.
Yin L, Juneja R, Lindsay L, Pandey T, Parker DS. Semihard iron-based permanent-magnet supplies. Phys Rev Appl. 2021;15: 024012.
Busquets M, Espargaró A, Sabaté R, Estelrich J. Magnetic nanoparticles cross the blood–mind barrier: when physics rises to a problem. Nanomaterials. 2015;5:2231–48.
Natarajan S, Harini Okay, Gajula GP, Sarmento B, Neves-Petersen MT, Thiagarajan V. Multifunctional magnetic iron oxide nanoparticles: various artificial approaches, floor modifications, cytotoxicity in the direction of biomedical and industrial functions. BMC Mater. 2019;1:2.
Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Hyperlink HE, et al. Present and potential imaging functions of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017;92(1):47–66.
Provenzano R, Schiller B, Rao M, Coyne D, Brenner L, Pereira BJG. Ferumoxytol as an intravenous iron alternative remedy in hemodialysis sufferers. Clin J Am Soc Nephrol. 2009;4(2):386–93.
Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, concentrating on and therapy of main and metastatic tumors of the mind. J Management Launch. 2020;320:45–62.
Vinzant N, Scholl JL, Wu C-M, Kindle T, Koodali R, Forster GL. Iron oxide nanoparticle supply of peptides to the mind: reversal of tension throughout drug withdrawal. Entrance Neurosci. 2017;11:608.
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma remedy: a combinational method for enhanced supply of nanoparticles. Sci Rep. 2020;10:11292.
Sprint S, Balasubramaniam M, Villalta F, Sprint C, Pandhare J. Impression of cocaine abuse on HIV pathogenesis. Entrance Microbiol. 2015;6:1111.
Jayant R, Atluri V, Agudelo M, Sagar V, Kaushik A, Nair M. Sustained-release nanoART formulation for the therapy of neuroAIDS. Int J Nanomed. 2015;10:1077–93.
Rodriguez M, Kaushik A, Lapierre J, Dever SM, El-Hage N, Nair M. Electro-magnetic nano-particle certain Beclin1 siRNA crosses the blood–mind barrier to attenuate the inflammatory results of HIV-1 an infection in vitro. J Neuroimmune Pharmacol. 2017;12(1):120–32.
Sagar V, Atluri VSR, Pilakka-Kanthikeel S, Nair M. Magnetic nanotherapeutics for dysregulated synaptic plasticity throughout neuroAIDS and drug abuse. Mol Mind. 2016;9:57.
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in most cancers remedy and prognosis. Adv Healthc Mater. 2020;9(9):1901058.
WHO-Most cancers. WHO. https://www.who.int/news-room/fact-sheets/element/most cancers. 2021.
American Most cancers Society (ACS). International most cancers burden. American Most cancers Society (ACS). https://www.most cancers.org/health-care-professionals/our-global-health-work/global-cancer-burden.html. 2021.
Mohan A, Dipallini S, Lata S, Mohanty S, Pradhan PK, Patel P, et al. Oxidative stress induced antimicrobial efficacy of chitosan and silver nanoparticles coated Gutta-percha for endodontic functions. Mater In the present day Chem. 2020;17: 100299.
Mukherjee S, Liang L, Veiseh O. Latest developments of magnetic nanomaterials in most cancers remedy. Pharmaceutics. 2020;12(2):147.
Kheirkhah P, Denyer S, Bhimani AD, Arnone GD, Esfahani DR, Aguilar T, et al. Magnetic drug concentrating on: a novel therapy for intramedullary spinal twine tumors. Sci Rep. 2018;8:11417.
Racca L, Cauda V. Remotely activated nanoparticles for anticancer remedy. Nano-Micro Lett. 2021;13:11.
Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, et al. In vitro biocompatibility research of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical utility. Sci Rep. 2017;7:46513.
Srisa-nga Okay, Mankhetkorn S, Okonogi S, Khonkarn R. Supply of superparamagnetic polymeric micelles loaded with quercetin to hepatocellular carcinoma cells. J Pharm Sci. 2019;108(2):996–1006.
Nagesh PKB, Johnson NR, Boya VKN, Chowdhury P, Othman SF, Khalilzad-Sharghi V, et al. PSMA focused docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate most cancers. Colloids Surf B Biointerfaces. 2016;144:8–20.
Quinto CA, Mohindra P, Tong S, Bao G. Multifunctional superparamagnetic iron oxide nanoparticles for mixed chemotherapy and hyperthermia most cancers therapy. Nanoscale. 2015;7(29):12728–36.
Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F. Measurement-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129(9):2628–35.
Zhou Y, Wang R, Teng Z, Wang Z, Hu B, Kolios M, et al. Magnetic nanoparticle-promoted droplet vaporization for in vivo stimuli-responsive most cancers theranostics. NPG Asia Mater. 2016;8: e313.
Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, et al. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in kind 1 diabetes animal mannequin. Sci Rep. 2020;10:5302.
Borroni E, Miola M, Ferraris S, Ricci G, ŽužekRožman Okay, Kostevšek N, et al. Tumor concentrating on by lentiviral vectors mixed with magnetic nanoparticles in mice. Acta Biomater. 2017;59:303–16.
Huh Y-M, Lee E-S, Lee J-H, Jun Y-W, Kim P-H, Yun C-O, et al. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene supply. Adv Mater. 2007;19:3109–12.
WHO-COVID-19. World Well being group. https://www.who.int/emergencies/illnesses/novel-coronavirus-2019. 2021.
Bhalla N, Pan Y, Yang Z, Payam AF. Alternatives and challenges for biosensors and nanoscale analytical instruments for pandemics: COVID-19. ACS Nano. 2020;14(7):7783–807.
Search engine optimization G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, et al. Fast detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens utilizing field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–42.
Mahari S, Roberts A, Shahdeo D, Gandhi S. eCovSens-ultrasensitive novel in-house constructed printed circuit board primarily based electrochemical gadget for fast detection of nCovid-19 antigen, a spike protein area 1 of SARS-CoV-2. bioRxiv. 2020. https://doi.org/10.1101/2020.04.24.059204.
Tian B, Gao F, Fock J, Dufva M, Hansen MF. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens Bioelectron. 2020;165: 112356.
Somvanshi SB, Kharat PB, Saraf TS, Somwanshi SB, Shejul SB, Jadhav KM. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater Res Innov. 2021;25(3):169–74.
Chacón-Torres JC, Reinoso C, Navas-León DG, Briceño S, González G. Optimized and scalable synthesis of magnetic nanoparticles for RNA extraction in response to growing nations’ wants within the detection and management of SARS-CoV-2. Sci Rep. 2020;10:19004.
Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77.
Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medication. J Nanomater. 2012;2012: 614094.
Liu G, Gao J, Ai H, Chen X. Purposes and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9:1533–45.
Verma SK, Jha E, Panda PK, Thirumurugan A, Suar M. Organic results of green-synthesized metallic nanoparticles: a mechanistic view of antibacterial exercise and cytotoxicity. In: Superior nanostructured supplies for environmental remediation. Cham: Springer; 2019. p. 145–71.
Winkler DA. Function of synthetic intelligence and machine studying in nanosafety. Small. 2020;16(36):2001883.
Ho D, Wang P, Kee T. Synthetic intelligence in nanomedicine. Nanoscale Horiz. 2019;4:365–77.
Singh AV, Ansari MHD, Rosenkranz D, Maharjan RS, Kriegel FL, Gandhi Okay, et al. Synthetic intelligence and machine studying in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthc Mater. 2020;9(17):1901862.
Adir O, Poley M, Chen G, Froim S, Krinsky N, Shklover J, et al. Integrating synthetic intelligence and nanotechnology for precision most cancers medication. Adv Mater. 2020;32(13): e1901989.
Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, et al. Exploiting machine studying for end-to-end drug discovery and improvement. Nat Mater. 2019;18:435–41.
Wu Okay, Su D, Liu J, Saha R, Wang J-P. Magnetic nanoparticles in nanomedicine: a evaluation of latest advances. Nanotechnology. 2019;30(50): 502003.
Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug supply: functions and traits. Professional Opin Drug Deliv. 2019;16(1):69–78.
Chen C, Wang P, Li L. Purposes of bacterial magnetic nanoparticles in nanobiotechnology. J Nanosci Nanotechnol. 2016;16:2164–71.
Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic characterization of iron oxide nanoparticles for biomedical functions. Strategies Mol Biol. 2017;1570:47–71.
Gudovan D, Balaure P, Mihăiescu D, Fudulu A, Purcăreanu B, Radu M. Functionalized magnetic nanoparticles for biomedical functions. Curr Pharm Des. 2015;21(42):6038–54.
Redolfi Riva E, Sinibaldi E, Grillone AF, Del Turco S, Mondini A, Li T, et al. Enhanced in vitro magnetic cell concentrating on of doxorubicin-loaded magnetic liposomes for localized most cancers remedy. Nanomaterials. 2020;10(11):2104.
Lee N, Kim H, Choi SH, Park M, Kim D, Kim H-C, et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for extremely delicate MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci. 2011;108(7):2662–7.
Scheenen TWJ, Zamecnik P. The function of magnetic resonance imaging in (future) most cancers staging. Make investments Radiol. 2021;56:42–9.
Yang Z, Duan J, Wang J, Liu Q, Shang R, Yang X, et al. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA focused supply in hepatocellular carcinoma remedy. Int J Nanomed. 2018;13:1851–65.
Setua S, Khan S, Yallapu MM, Behrman SW, Sikander M, Khan SS, et al. Restitution of tumor suppressor microRNA-145 utilizing magnetic nanoformulation for pancreatic most cancers remedy. J Gastrointest Surg. 2017;21:94–105.
Nagesh P, Chowdhury P, Hatami E, Boya V, Kashyap V, Khan S, et al. miRNA-205 nanoformulation sensitizes prostate most cancers cells to chemotherapy. Cancers (Basel). 2018;10:289.
Luo X, Peng X, Hou J, Wu S, Shen J, Wang L. Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic brokers for magnetic resonance imaging and PD-L1 siRNA supply for gastric most cancers. Int J Nanomed. 2017;12:5331–43.
Unterweger H, Janko C, Schwarz M, Dézsi L, Urbanics R, Matuszak J, et al. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable distinction agent for magnetic resonance imaging. Int J Nanomed. 2017;12:5223–38.
Arami S, Rashidi M, Mahdavi M, Fathi M, Entezami A. Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA supply system. Hum Exp Toxicol. 2017;36:227–37.
Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U. Loading of gemcitabine on chitosan magnetic nanoparticles will increase the anti-cancer efficacy of the drug. Eur J Pharmacol. 2016;784:121–8.
Liu M-C, Jin S, Zheng M, Wang Y, Zhao P, Tang D, et al. Daunomycin-loaded superparamagnetic iron oxide nanoparticles: preparation, magnetic concentrating on, cell cytotoxicity, and protein supply analysis. J Biomater Appl. 2016;31:261–72.
Track M, Kim Y-J, Kim Y-H, Roh J, Kim E-C, Lee HJ, et al. Lengthy-term results of magnetically focused ferumoxide-labeled human neural stem cells in focal cerebral ischemia. Cell Transplant. 2015;24(2):183–90.
Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging. 2008;1(5):624–34.
Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, et al. Intramural supply of rapamycin with αvβ3-targeted paramagnetic nanoparticles inhibits stenosis after balloon damage. Arterioscler Thromb Vasc Biol. 2008;28:820–6.
Friedrich RP, Zaloga J, Schreiber E, Tóth IY, Tombácz E, Lyer S, et al. Tissue plasminogen activator binding to superparamagnetic iron oxide nanoparticle—covalent versus adsorptive method. Nanoscale Res Lett. 2016;11(1):297.
Tadayon A, Jamshidi R, Esmaeili A. Supply of tissue plasminogen activator and streptokinase magnetic nanoparticles to focus on vascular illnesses. Int J Pharm. 2015;495:428–38.
Ma Y-H, Wu S-Y, Wu T, Chang Y-J, Hua M-Y, Chen J-P. Magnetically focused thrombolysis with recombinant tissue plasminogen activator certain to polyacrylic acid-coated nanoparticles. Biomaterials. 2009;30:3343–51.
Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, et al. Tumor penetrating theranostic nanoparticles for enhancement of focused and image-guided drug supply into peritoneal tumors following intraperitoneal supply. Theranostics. 2017;7(6):1689–704.
Chen P, Jiang X, Huang Okay, Hu P, Li X, Wei L, et al. Multimode microRNA sensing through a number of enzyme-free sign amplification and cation-exchange response. ACS Appl Mater Interfaces. 2019;11(40):36476–84.
Li X, Zhao J, Xu R, Pan L, Liu Y-M. Mass spectrometric quantification of microRNAs in organic samples primarily based on multistage sign amplification. Analyst. 2020;145:1783–8.
Nourani S, Ghourchian H, Boutorabi SM. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B floor antigen. Anal Biochem. 2013;441:1–7.
Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N. An impedimetric DNA sensor primarily based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators B Chem. 2008;134(2):755–60.
Tian B, Han Y, Wetterskog E, Donolato M, Hansen MF, Svedlindh P, et al. MicroRNA detection by DNAzyme-mediated disintegration of magnetic nanoparticle assemblies. ACS Sens. 2018;3(9):1884–91.
Zhang F, Luo L, Gong H, Chen C, Cai C. A magnetic molecularly imprinted optical chemical sensor for particular recognition of hint portions of virus. RSC Adv. 2018;8:32262–8.
Rohiwal SS, Dvorakova N, Klima J, Vaskovicova M, Senigl F, Slouf M, et al. Polyethylenimine primarily based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome modifying. Sci Rep. 2020;10:4619.
Farre C, Viezzi S, Wright A, Robin P, Lejal N, Manzano M, et al. Particular and delicate detection of Influenza A virus utilizing a biotin-coated nanoparticle enhanced immunomagnetic assay. Anal Bioanal Chem. 2022;414:265–76.
Bi S, Chen M, Jia X, Dong Y. A hot-spot-active magnetic graphene oxide substrate for microRNA detection primarily based on cascaded chemiluminescence resonance power switch. Nanoscale. 2015;7:3745–53.