Nanotechnology

Rising developments within the nanomedicine functions of functionalized magnetic nanoparticles as novel therapies for acute and power illnesses | Journal of Nanobiotechnology

Rising developments within the nanomedicine functions of functionalized magnetic nanoparticles as novel therapies for acute and power illnesses | Journal of Nanobiotechnology
Written by admin


  • Verma SK, Panda PK, Kumari P, Patel P, Arunima A, Jha E, et al. Figuring out components for the nano-biocompatibility of cobalt oxide nanoparticles: proximal discrepancy in intrinsic atomic interactions at differential vicinage. Inexperienced Chem. 2021;23:3439–58.

    CAS 
    Article 

    Google Scholar
     

  • Lu C, Han L, Wang J, Wan J, Track G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev. 2021;50:8102–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen Y-T, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing utilizing magnetic particle detection methods. Sensors. 2017;17(10):2300.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide primarily based nanoparticles for multimodal imaging and magnetoresponsive remedy. Chem Rev. 2015;115(19):10637–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Issadore D, Park YI, Shao H, Min C, Lee Okay, Liong M, et al. Magnetic sensing expertise for molecular analyses. Lab Chip. 2014;14:2385–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Neamtu M, Nadejde C, Hodoroaba V-D, Schneider RJ, Verestiuc L, Panne U. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic utility and evaluation of toxicity. Sci Rep. 2018;8:6278.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mylkie Okay, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-coated magnetite nanoparticles for protein immobilization. Supplies (Basel). 2021;14(2):248.

    CAS 
    Article 

    Google Scholar
     

  • Heydari Sheikh Hossein H, Jabbari I, Zarepour A, Zarrabi A, Ashrafizadeh M, Taherian A, et al. Functionalization of magnetic nanoparticles by folate as potential MRI distinction agent for breast most cancers diagnostics. Molecules. 2020;25(18):4053.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhao S, Yu X, Qian Y, Chen W, Shen J. Multifunctional magnetic iron oxide nanoparticles: a sophisticated platform for most cancers theranostics. Theranostics. 2020;10(14):6278–309.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhong J, Rösch EL, Viereck T, Schilling M, Ludwig F. Towards fast and delicate detection of SARS-CoV-2 with functionalized magnetic nanoparticles. ACS Sens. 2021;6(3):976–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abarca-Cabrera L, Fraga-García P, Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater Res. 2021;25:12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, et al. Magnetic nanoparticles: from design and synthesis to actual world functions. Nanomaterials. 2017;7(9):243.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Majidi S, ZeinaliSehrig F, Farkhani SM, SoleymaniGoloujeh M, Akbarzadeh A. Present strategies for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44:722–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khizar S, Ahmad NM, Zine N, Jaffrezic-Renault N, Errachid-el-salhi A, Elaissari A. Magnetic nanoparticles: from synthesis to theranostic functions. ACS Appl Nano Mater. 2021;4(5):4284–306.

    CAS 
    Article 

    Google Scholar
     

  • Patel P, Nandi A, Jha E, Sinha A, Mohanty S, Panda PK, et al. Magnetic nanoparticles: fabrication, characterization, properties, and utility for atmosphere sustainability. In: Magnetic nanoparticle-based hybrid supplies. London: Elsevier; 2021. p. 33–64.

    Chapter 

    Google Scholar
     

  • Lee H, Shin T-H, Cheon J, Weissleder R. Latest developments in magnetic diagnostic methods. Chem Rev. 2015;115(19):10690–724.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, safety, functionalization, and utility. Angew Chem Int Ed. 2007;46(8):1222–44.

    CAS 
    Article 

    Google Scholar
     

  • Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for focused drug supply and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maleki A, Niksefat M, Rahimi J, Hajizadeh Z. Design and preparation of Fe3O4@PVA polymeric magnetic nanocomposite movie and floor coating by sulfonic acid through in situ strategies and analysis of its catalytic efficiency within the synthesis of dihydropyrimidines. BMC Chem. 2019;13(1):19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shigeoka D, Yamazaki T, Ishikawa T, Miike Okay, Fujiwara Okay, Ide T, et al. Functionalization and magnetic rest of ferrite nanoparticles for theranostics. IEEE Trans Magn. 2018;54(11):6100707.

    Article 

    Google Scholar
     

  • Yalcin S, Gündüz U. Iron oxide-based polymeric magnetic nanoparticles for drug and gene supply: in vitro and in vivo functions in most cancers. In: Handbook of polymer and ceramic nanotechnology. Cham: Springer Worldwide Publishing; 2019. p. 1–22.


    Google Scholar
     

  • Sandler SE, Fellows B, Thompson MO. Finest practices for characterization of magnetic nanoparticles for biomedical functions. Anal Chem. 2019;91(22):14159–69.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pellicer-Guridi R, Vogel MW, Reutens DC, Vegh V. In direction of final low frequency air-core magnetometer sensitivity. Sci Rep. 2017;7:2269.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gaster RS, Xu L, Han S-J, Wilson RJ, Corridor DA, Osterfeld SJ, et al. Quantification of protein interactions and answer transport utilizing high-density GMR sensor arrays. Nat Nanotechnol. 2011;6:314–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chung HJ, Castro CM, Im H, Lee H, Weissleder R. A magneto-DNA nanoparticle system for fast detection and phenotyping of micro organism. Nat Nanotechnol. 2013;8:369–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kenning GG, Rodriguez R, Zotev VS, Moslemi A, Wilson S, Hawel L, et al. Detection of magnetically enhanced most cancers tumors utilizing SQUID magnetometry: a feasibility research. Rev Sci Instrum. 2005;76: 014303.

    Article 
    CAS 

    Google Scholar
     

  • Issa B, Obaidat I, Albiss B, Haik Y. Magnetic nanoparticles: floor results and properties associated to biomedicine functions. Int J Mol Sci. 2013;14(11):21266–305.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arun T, Verma SK, Panda PK, Joseyphus RJ, Jha E, Akbari-Fakhrabadi A, et al. Facile synthesized novel hybrid graphene oxide/cobalt ferrite magnetic nanoparticles primarily based floor coating materials inhibit bacterial secretion pathway for antibacterial impact. Mater Sci Eng C. 2019;104: 109932.

    CAS 
    Article 

    Google Scholar
     

  • Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical functions. Adv Healthc Mater. 2018;7(5):1700845.

    Article 
    CAS 

    Google Scholar
     

  • Feng Q, Liu Y, Huang J, Chen Okay, Huang J, Xiao Okay. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with completely different sizes and coatings. Sci Rep. 2018;8:2082.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sheel R, Kumari P, Panda PK, Jawed Ansari MD, Patel P, Singh S, et al. Molecular intrinsic proximal interplay infer oxidative stress and apoptosis modulated in vivo biocompatibility of P. niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environ Pollut. 2020;267: 115482.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, et al. Potential toxicity of iron oxide magnetic nanoparticles: a evaluation. Molecules. 2020;25(14):3159.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Reenen A, de Jong AM, den Toonder JMJ, Prins MWJ. Built-in lab-on-chip biosensing methods primarily based on magnetic particle actuation—a complete evaluation. Lab Chip. 2014;14:1966–86.

    PubMed 
    Article 

    Google Scholar
     

  • Wilczewska AZ, Niemirowicz Okay, Markiewicz KH, Automotive H. Nanoparticles as drug supply methods. Pharmacol Rep. 2012;64(5):1020–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arias L, Pessan J, Vieira A, Lima T, Delbem A, Monteiro D. Iron oxide nanoparticles for biomedical functions: a perspective on synthesis, medicine, antimicrobial exercise, and toxicity. Antibiotics. 2018;7(2):46.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yallapu MM, Foy SP, Jain TK, Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug supply and magnetic resonance imaging functions. Pharm Res. 2010;27(11):2283–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chircov C, Grumezescu AM, Holban AM. Magnetic particles for superior molecular prognosis. Supplies (Basel). 2019;12(13):2158.

    CAS 
    Article 

    Google Scholar
     

  • Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, et al. Utility of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnol. 2020;18:62.

    Article 

    Google Scholar
     

  • Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, et al. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev. 2019;48:5717–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Dios AS, Díaz-García ME. Multifunctional nanoparticles: analytical prospects. Anal Chim Acta. 2010;666(1–2):1–22.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sprint S, Balasubramaniam M, Sprint C, Pandhare J. Biotin-based pulldown assay to validate mRNA targets of mobile miRNAs. J Vis Exp. 2018;12(136):57786.


    Google Scholar
     

  • Gessner I, Fries JWU, Brune V, Mathur S. Magnetic nanoparticle-based amplification of microRNA detection in physique fluids for early illness prognosis. J Mater Chem B. 2021;9:9–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug supply and imaging functions. Nanoscale Res Lett. 2019;14:188.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale EN. Publication developments in drug supply and magnetic nanoparticles. Nanoscale Res Lett. 2019;14:164.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hannon GJ. RNA interference. Nature. 2002;418:244–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim DH, Rossi JJ. Methods for silencing human illness utilizing RNA interference. Nat Rev Genet. 2007;8:173–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu B, Weng Y, Xia X, Liang X, Huang Y. Medical advances of siRNA therapeutics. J Gene Med. 2019;21(7): e3097.

    PubMed 
    Article 

    Google Scholar
     

  • Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: transferring from bench to clinic as subsequent technology medication. Mol Ther Nucleic Acids. 2017;8:132–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Setten RL, Rossi JJ, Han S. The present state and future instructions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mishra DK, Balekar N, Mishra PK. Nanoengineered methods for siRNA supply: from goal evaluation to most cancers therapeutic efficacy. Drug Deliv Transl Res. 2017;7(2):346–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fiszer A, Krzyzosiak WJ. Oligonucleotide-based methods to fight polyglutamine illnesses. Nucleic Acids Res. 2014;42(11):6787–810.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dowaidar M, Abdelhamid HN, Hällbrink M, Zou X, Langel Ü. Graphene oxide nanosheets in advanced with cell penetrating peptides for oligonucleotides supply. Biochim Biophys Acta Gen Subj. 2017;1861(9):2334–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boisguérin P, Deshayes S, Gait MJ, O’Donovan L, Godfrey C, Betts CA, et al. Supply of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev. 2015;87:52–67.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ganjeifar B, Morshed SF. Focused Drug Supply in mind tumors-nanochemistry functions and advances. Curr Prime Med Chem. 2020;20(22):1202–23.


    Google Scholar
     

  • Yin PT, Pongkulapa T, Cho H-Y, Han J, Pasquale NJ, Rabie H, et al. Overcoming chemoresistance in most cancers through mixed microRNA therapeutics with anticancer medicine utilizing multifunctional magnetic core-shell nanoparticles. ACS Appl Mater Interfaces. 2018;10(32):26954–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yin PT, Shah BP, Lee Okay-B. Mixed magnetic nanoparticle-based microRNA and hyperthermia remedy to boost apoptosis in mind most cancers cells. Small. 2014;10(20):4106–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gessner I, Yu X, Jüngst C, Klimpel A, Wang L, Fischer T, et al. Selective seize and purification of microRNAs and intracellular proteins by antisense-vectorized magnetic nanobeads. Sci Rep. 2019;9:2069.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Do HD, Ménager C, Michel A, Seguin J, Korichi T, Dhotel H, et al. Improvement of theranostic cationic liposomes designed for image-guided supply of nucleic acid. Pharmaceutics. 2020;12(9):854.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sosa-Acosta JR, Iriarte-Mesa C, Ortega GA, Díaz-García AM. DNA–iron oxide nanoparticles conjugates: practical magnetic nanoplatforms in biomedical functions. Prime Curr Chem. 2020;378:19–47.

    Article 
    CAS 

    Google Scholar
     

  • Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, et al. Magnetically responsive hybrid nanoparticles for in vitro siRNA supply to breast most cancers cells. Mater Sci Eng C. 2019;99:1182–90.

    CAS 
    Article 

    Google Scholar
     

  • Titze de Almeida S, Horst C, Soto-Sánchez C, Fernandez E, Titze de Almeida R. Supply of miRNA-targeted oligonucleotides within the rat striatum by magnetofection with Neuromag®. Molecules. 2018;23(7):1825.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dowaidar M, Abdelhamid HN, Hällbrink M, Freimann Okay, Kurrikoff Okay, Zou X, et al. Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene supply. Sci Rep. 2017;7:9159.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Grabowska M, Grześkowiak BF, Szutkowski Okay, Wawrzyniak D, Głodowicz P, Barciszewski J, et al. Nano-mediated supply of double-stranded RNA for gene remedy of glioblastoma multiforme. PLoS ONE. 2019;14(3): e0213852.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin L, Wang Q, Chen J, Wang Z, Xin H, Zhang D. Environment friendly supply of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral most cancers cells. Pharmaceutics. 2019;11(11):615.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bhattacharjee R, Nandi A, Mitra P, Saha Okay, Patel P, Jha E, et al. Theragnostic utility of nanoparticle and CRISPR towards food-borne multi-drug resistant pathogens. Mater In the present day Bio. 2022;15: 100291.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bartel DP. MicroRNAs: goal recognition and regulatory capabilities. Cell. 2009;136(2):215–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in physique fluids—the combo of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gupta S, Panda PK, Hashimoto RF, Samal SK, Mishra S, Verma SK, et al. Dynamical modeling of miR-34a, miR-449a, and miR-16 reveals quite a few DDR signaling pathways regulating senescence, autophagy, and apoptosis in HeLa cells. Sci Rep. 2022;12:4911.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nath A, Bhattacharjee R, Nandi A, Sinha A, Kar S, Manoharan N, et al. Phage delivered CRISPR-Cas system to fight multidrug-resistant pathogens in intestine microbiome. Biomed Pharmacother. 2022;151: 113122.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen Okay-H, Pan M-J, Jargalsaikhan Z, Ishdorj T-O, Tseng F-G. Improvement of surface-enhanced raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal most cancers. Biosensors. 2020;10(11):163.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, de la Guardia M. Latest advances in floor plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron. 2020;169: 112599.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li F, Mei L, Zhan C, Mao Q, Yao M, Wang S, et al. Liquid hybridization and stable section detection: a extremely delicate and correct technique for microRNA detection in crops and animals. Int J Mol Sci. 2016;17(9):1457.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cacheux J, Bancaud A, Leichlé T, Cordelier P. Technological challenges and future points for the detection of circulating microRNAs in sufferers with most cancers. Entrance Chem. 2019;7:815.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in illness: newest findings relating to their function in prognosis and prognosis. Cells. 2020;9(2):276.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Johnson BN, Mutharasan R. Biosensor-based microRNA detection: methods, design, efficiency, and challenges. Analyst. 2014;139:1576–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pogribny IP. MicroRNAs as biomarkers for medical research. Exp Biol Med. 2018;243(3):283–90.

    CAS 
    Article 

    Google Scholar
     

  • Su D, Wu Okay, Saha R, Liu J, Wang J-P. Magnetic nanotechnologies for early most cancers diagnostics with liquid biopsies: a evaluation. J Most cancers Metastasis Deal with. 2020;2020(6):19.


    Google Scholar
     

  • Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in therapeutic implications of inorganic drug supply nano-platforms for most cancers. Int J Mol Sci. 2019;20(4):965.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Iyer SR, Xu S, Stains JP, Bennett CH, Lovering RM. Superparamagnetic iron oxide nanoparticles in musculoskeletal biology. Tissue Eng Half B Rev. 2017;23(4):373–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • WHO-Cardiovascular Ailments. World Well being Group. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1. 2021.

  • Neuwelt A, Sidhu N, Hu C-AA, Mlady G, Eberhardt SC, Sillerud LO. Iron-based superparamagnetic nanoparticle distinction brokers for MRI of an infection and irritation. Am J Roentgenol. 2015;204(3):W302–13.

    Article 

    Google Scholar
     

  • Vazquez-Prada KX, Lam J, Kamato D, Xu ZP, Little PJ, Ta HT. Focused molecular imaging of cardiovascular illnesses by iron oxide nanoparticles. Arterioscler Thromb Vasc Biol. 2021;41(2):601–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang J, Lobatto ME, Learn JC, Mieszawska AJ, Fayad ZA, Mulder WJM. Nanomedical theranostics in heart problems. Curr Cardiovasc Imaging Rep. 2012;5(1):19–25.

    PubMed 
    Article 

    Google Scholar
     

  • Wenzel D. Magnetic nanoparticles: novel choices for vascular restore? Nanomedicine. 2016;11(8):869–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bietenbeck M, Engel S, Lamping S, Hansen U, Faber C, Ravoo BJ, et al. Functionalization of clinically accepted MRI distinction brokers for the supply of VEGF. Bioconj Chem. 2019;30(4):1042–7.

    CAS 
    Article 

    Google Scholar
     

  • Atluri V, Jayant R, Pilakka-Kanthikeel S, Garcia G, Thangavel S, Yndart A, et al. Improvement of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 an infection. Int J Nanomed. 2016;11:4287–98.

    CAS 
    Article 

    Google Scholar
     

  • Li W, Yalcin M, Bharali DJ, Lin Q, Godugu Okay, Fujioka Okay, et al. Pharmacokinetics, biodistribution, and anti-angiogenesis efficacy of diamino propane tetraiodothyroacetic acid-conjugated biodegradable polymeric nanoparticle. Sci Rep. 2019;9:9006.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Richards JMJ, Shaw CA, Lang NN, Williams MC, Semple SIK, MacGillivray TJ, et al. In vivo mononuclear cell monitoring utilizing superparamagnetic particles of iron oxide. Circ Cardiovasc Imaging. 2012;5(4):509–17.

    PubMed 
    Article 

    Google Scholar
     

  • Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, et al. Latest advances in nanomaterials for remedy and prognosis for atherosclerosis. Adv Drug Deliv Rev. 2021;170:142–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abdalla AME, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Present challenges of most cancers anti-angiogenic remedy and the promise of nanotherapeutics. Theranostics. 2018;8(2):533–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dadfar SM, Roemhild Okay, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic functions. Adv Drug Deliv Rev. 2019;138:302–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • George SJ, Baker AH. Gene switch to the vasculature. Mol Biotechnol. 2002;22:153–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann Okay, Plank C, et al. Enchancment of vascular perform by magnetic nanoparticle-assisted circumferential gene switch into the native endothelium. J Management Launch. 2016;241:164–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann Okay, Bloch W, et al. Vascular restore by circumferential cell remedy utilizing magnetic nanoparticles and tailor-made magnets. ACS Nano. 2016;10(1):369–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Flores AM, Ye J, Jarr Okay-U, Hosseini-Nassab N, Smith BR, Leeper NJ. Nanoparticle remedy for vascular illnesses. Arterioscler Thromb Vasc Biol. 2019;39(4):635–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The worldwide burden of neurological problems: translating proof into coverage. Lancet Neurol. 2020;19(3):255–65.

    PubMed 
    Article 

    Google Scholar
     

  • Ylä-Herttuala S, Baker AH. Cardiovascular gene remedy: previous, current, and future. Mol Ther. 2017;25(5):1095–106.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Cannatà A, Ali H, Sinagra G, Giacca M. Gene remedy for the center classes realized and future views. Circ Res. 2020;126(10):1394–414.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. International, regional, and nationwide burden of neurological problems, 1990–2016: a scientific evaluation for the International Burden of Illness Research 2016. Lancet Neurol. 2019;18:459–80.

    Article 

    Google Scholar
     

  • Obeso JA, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s illness. N Engl J Med. 2001;345(13):956–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deisseroth Okay. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18:1213–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, et al. Noninvasive deep mind stimulation through temporally interfering electrical fields. Cell. 2017;169(6):1029–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial centered ultrasound modulates the exercise of main somatosensory cortex in people. Nat Neurosci. 2014;17:322–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A. Utility of infrared mild for in vivo neural stimulation. J Biomed Decide. 2005;10(6): 064003.

    PubMed 
    Article 

    Google Scholar
     

  • Carvalho-de-Souza JL, Treger JS, Dang B, Kent SBH, Pepperberg DR, Bezanilla F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 2015;86(1):207–17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Close to-infrared deep mind stimulation through upconversion nanoparticle-mediated optogenetics. Science. 2018;359(6376):679–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soto-Sánchez C, Martínez-Navarrete G, Humphreys L, Puras G, Zarate J, Pedraz JL, et al. Enduring high-efficiency in vivo transfection of neurons with non-viral magnetoparticles within the rat visible cortex for optogenetic functions. Nanomed Nanotechnol Biol Med. 2015;11(4):835–43.

    Article 
    CAS 

    Google Scholar
     

  • Wen X, Wang Okay, Zhao Z, Zhang Y, Solar T, Zhang F, et al. Mind-targeted supply of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS ONE. 2014;9: e106652.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ahlawat J, Guillama Barroso G, Masoudi Asil S, Alvarado M, Armendariz I, Bernal J, et al. Nanocarriers as potential drug supply candidates for overcoming the blood–mind barrier: challenges and prospects. ACS Omega. 2020;5(22):12583–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pardridge WM. Blood–mind barrier and supply of protein and gene therapeutics to mind. Entrance Getting older Neurosci. 2020;11:373.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Daneman R, Prat A. The blood–mind barrier. Chilly Spring Harb Perspect Biol. 2015;7(1): a020412.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guiot C, Zullino S, Priano L, Cavalli R. The physics of drug-delivery throughout the blood–mind barrier. Ther Deliv. 2016;7(3):153–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, et al. Bodily power for drug supply; poration, focus and activation. Adv Drug Deliv Rev. 2014;71:98–114.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Appelboom G, Detappe A, LoPresti M, Kunjachan S, Mitrasinovic S, Goldman S, et al. Stereotactic modulation of blood–mind barrier permeability to boost drug supply. Neuro Oncol. 2016;18(12):1601–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dilnawaz F, Sahoo SK. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov In the present day. 2015;20(10):1256–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, et al. Magnetically guided central nervous system supply and toxicity analysis of magneto-electric nanocarriers. Sci Rep. 2016;6:25309.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaushik A, Jayant RD, Sagar V, Nair M. The potential of magneto-electric nanocarriers for drug supply. Professional Opin Drug Deliv. 2014;11(10):1635–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tabatabaei SN, Girouard H, Carret A-S, Martel S. Towards nonsystemic supply of therapeutics throughout the blood–mind barrier. Nanomedicine. 2015;10(14):2129–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thomsen LB, Thomsen MS, Moos T. Focused drug supply to the mind utilizing magnetic nanoparticles. Ther Deliv. 2015;6(10):1145–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu X, Zhang Y, Wang L, Li G, Gao J, Wang Y. Improvement of l-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood mind barrier crossing and ischemic stroke therapy. Drug Deliv. 2021;28(1):380–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu H-L, Yang H-W, Hua M-Y, Wei Okay-C. Enhanced therapeutic agent supply by magnetic resonance imaging–monitored centered ultrasound blood–mind barrier disruption for mind tumor therapy: an outline of the present preclinical standing. Neurosurg Focus. 2012;32(1):E4.

    PubMed 
    Article 

    Google Scholar
     

  • Qiu Y, Tong S, Zhang L, Sakurai Y, Myers DR, Hong L, et al. Magnetic forces allow managed drug supply by disrupting endothelial cell–cell junctions. Nat Commun. 2017;8:15594.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yin L, Juneja R, Lindsay L, Pandey T, Parker DS. Semihard iron-based permanent-magnet supplies. Phys Rev Appl. 2021;15: 024012.

    CAS 
    Article 

    Google Scholar
     

  • Busquets M, Espargaró A, Sabaté R, Estelrich J. Magnetic nanoparticles cross the blood–mind barrier: when physics rises to a problem. Nanomaterials. 2015;5:2231–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Natarajan S, Harini Okay, Gajula GP, Sarmento B, Neves-Petersen MT, Thiagarajan V. Multifunctional magnetic iron oxide nanoparticles: various artificial approaches, floor modifications, cytotoxicity in the direction of biomedical and industrial functions. BMC Mater. 2019;1:2.

    Article 

    Google Scholar
     

  • Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Hyperlink HE, et al. Present and potential imaging functions of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017;92(1):47–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Provenzano R, Schiller B, Rao M, Coyne D, Brenner L, Pereira BJG. Ferumoxytol as an intravenous iron alternative remedy in hemodialysis sufferers. Clin J Am Soc Nephrol. 2009;4(2):386–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, concentrating on and therapy of main and metastatic tumors of the mind. J Management Launch. 2020;320:45–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vinzant N, Scholl JL, Wu C-M, Kindle T, Koodali R, Forster GL. Iron oxide nanoparticle supply of peptides to the mind: reversal of tension throughout drug withdrawal. Entrance Neurosci. 2017;11:608.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma remedy: a combinational method for enhanced supply of nanoparticles. Sci Rep. 2020;10:11292.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sprint S, Balasubramaniam M, Villalta F, Sprint C, Pandhare J. Impression of cocaine abuse on HIV pathogenesis. Entrance Microbiol. 2015;6:1111.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jayant R, Atluri V, Agudelo M, Sagar V, Kaushik A, Nair M. Sustained-release nanoART formulation for the therapy of neuroAIDS. Int J Nanomed. 2015;10:1077–93.

    CAS 
    Article 

    Google Scholar
     

  • Rodriguez M, Kaushik A, Lapierre J, Dever SM, El-Hage N, Nair M. Electro-magnetic nano-particle certain Beclin1 siRNA crosses the blood–mind barrier to attenuate the inflammatory results of HIV-1 an infection in vitro. J Neuroimmune Pharmacol. 2017;12(1):120–32.

    PubMed 
    Article 

    Google Scholar
     

  • Sagar V, Atluri VSR, Pilakka-Kanthikeel S, Nair M. Magnetic nanotherapeutics for dysregulated synaptic plasticity throughout neuroAIDS and drug abuse. Mol Mind. 2016;9:57.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in most cancers remedy and prognosis. Adv Healthc Mater. 2020;9(9):1901058.

    CAS 
    Article 

    Google Scholar
     

  • WHO-Most cancers. WHO. https://www.who.int/news-room/fact-sheets/element/most cancers. 2021.

  • American Most cancers Society (ACS). International most cancers burden. American Most cancers Society (ACS). https://www.most cancers.org/health-care-professionals/our-global-health-work/global-cancer-burden.html. 2021.

  • Mohan A, Dipallini S, Lata S, Mohanty S, Pradhan PK, Patel P, et al. Oxidative stress induced antimicrobial efficacy of chitosan and silver nanoparticles coated Gutta-percha for endodontic functions. Mater In the present day Chem. 2020;17: 100299.

    CAS 
    Article 

    Google Scholar
     

  • Mukherjee S, Liang L, Veiseh O. Latest developments of magnetic nanomaterials in most cancers remedy. Pharmaceutics. 2020;12(2):147.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kheirkhah P, Denyer S, Bhimani AD, Arnone GD, Esfahani DR, Aguilar T, et al. Magnetic drug concentrating on: a novel therapy for intramedullary spinal twine tumors. Sci Rep. 2018;8:11417.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Racca L, Cauda V. Remotely activated nanoparticles for anticancer remedy. Nano-Micro Lett. 2021;13:11.

    Article 
    CAS 

    Google Scholar
     

  • Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, et al. In vitro biocompatibility research of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical utility. Sci Rep. 2017;7:46513.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Srisa-nga Okay, Mankhetkorn S, Okonogi S, Khonkarn R. Supply of superparamagnetic polymeric micelles loaded with quercetin to hepatocellular carcinoma cells. J Pharm Sci. 2019;108(2):996–1006.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagesh PKB, Johnson NR, Boya VKN, Chowdhury P, Othman SF, Khalilzad-Sharghi V, et al. PSMA focused docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate most cancers. Colloids Surf B Biointerfaces. 2016;144:8–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quinto CA, Mohindra P, Tong S, Bao G. Multifunctional superparamagnetic iron oxide nanoparticles for mixed chemotherapy and hyperthermia most cancers therapy. Nanoscale. 2015;7(29):12728–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F. Measurement-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129(9):2628–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou Y, Wang R, Teng Z, Wang Z, Hu B, Kolios M, et al. Magnetic nanoparticle-promoted droplet vaporization for in vivo stimuli-responsive most cancers theranostics. NPG Asia Mater. 2016;8: e313.

    CAS 
    Article 

    Google Scholar
     

  • Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, et al. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in kind 1 diabetes animal mannequin. Sci Rep. 2020;10:5302.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Borroni E, Miola M, Ferraris S, Ricci G, ŽužekRožman Okay, Kostevšek N, et al. Tumor concentrating on by lentiviral vectors mixed with magnetic nanoparticles in mice. Acta Biomater. 2017;59:303–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huh Y-M, Lee E-S, Lee J-H, Jun Y-W, Kim P-H, Yun C-O, et al. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene supply. Adv Mater. 2007;19:3109–12.

    CAS 
    Article 

    Google Scholar
     

  • WHO-COVID-19. World Well being group. https://www.who.int/emergencies/illnesses/novel-coronavirus-2019. 2021.

  • Bhalla N, Pan Y, Yang Z, Payam AF. Alternatives and challenges for biosensors and nanoscale analytical instruments for pandemics: COVID-19. ACS Nano. 2020;14(7):7783–807.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Search engine optimization G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, et al. Fast detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens utilizing field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mahari S, Roberts A, Shahdeo D, Gandhi S. eCovSens-ultrasensitive novel in-house constructed printed circuit board primarily based electrochemical gadget for fast detection of nCovid-19 antigen, a spike protein area 1 of SARS-CoV-2. bioRxiv. 2020. https://doi.org/10.1101/2020.04.24.059204.

    Article 

    Google Scholar
     

  • Tian B, Gao F, Fock J, Dufva M, Hansen MF. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens Bioelectron. 2020;165: 112356.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Somvanshi SB, Kharat PB, Saraf TS, Somwanshi SB, Shejul SB, Jadhav KM. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater Res Innov. 2021;25(3):169–74.

    Article 
    CAS 

    Google Scholar
     

  • Chacón-Torres JC, Reinoso C, Navas-León DG, Briceño S, González G. Optimized and scalable synthesis of magnetic nanoparticles for RNA extraction in response to growing nations’ wants within the detection and management of SARS-CoV-2. Sci Rep. 2020;10:19004.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medication. J Nanomater. 2012;2012: 614094.

    Article 
    CAS 

    Google Scholar
     

  • Liu G, Gao J, Ai H, Chen X. Purposes and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9:1533–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verma SK, Jha E, Panda PK, Thirumurugan A, Suar M. Organic results of green-synthesized metallic nanoparticles: a mechanistic view of antibacterial exercise and cytotoxicity. In: Superior nanostructured supplies for environmental remediation. Cham: Springer; 2019. p. 145–71.

    Chapter 

    Google Scholar
     

  • Winkler DA. Function of synthetic intelligence and machine studying in nanosafety. Small. 2020;16(36):2001883.

    CAS 
    Article 

    Google Scholar
     

  • Ho D, Wang P, Kee T. Synthetic intelligence in nanomedicine. Nanoscale Horiz. 2019;4:365–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singh AV, Ansari MHD, Rosenkranz D, Maharjan RS, Kriegel FL, Gandhi Okay, et al. Synthetic intelligence and machine studying in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthc Mater. 2020;9(17):1901862.

    CAS 
    Article 

    Google Scholar
     

  • Adir O, Poley M, Chen G, Froim S, Krinsky N, Shklover J, et al. Integrating synthetic intelligence and nanotechnology for precision most cancers medication. Adv Mater. 2020;32(13): e1901989.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, et al. Exploiting machine studying for end-to-end drug discovery and improvement. Nat Mater. 2019;18:435–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu Okay, Su D, Liu J, Saha R, Wang J-P. Magnetic nanoparticles in nanomedicine: a evaluation of latest advances. Nanotechnology. 2019;30(50): 502003.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug supply: functions and traits. Professional Opin Drug Deliv. 2019;16(1):69–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen C, Wang P, Li L. Purposes of bacterial magnetic nanoparticles in nanobiotechnology. J Nanosci Nanotechnol. 2016;16:2164–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic characterization of iron oxide nanoparticles for biomedical functions. Strategies Mol Biol. 2017;1570:47–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gudovan D, Balaure P, Mihăiescu D, Fudulu A, Purcăreanu B, Radu M. Functionalized magnetic nanoparticles for biomedical functions. Curr Pharm Des. 2015;21(42):6038–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Redolfi Riva E, Sinibaldi E, Grillone AF, Del Turco S, Mondini A, Li T, et al. Enhanced in vitro magnetic cell concentrating on of doxorubicin-loaded magnetic liposomes for localized most cancers remedy. Nanomaterials. 2020;10(11):2104.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lee N, Kim H, Choi SH, Park M, Kim D, Kim H-C, et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for extremely delicate MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci. 2011;108(7):2662–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheenen TWJ, Zamecnik P. The function of magnetic resonance imaging in (future) most cancers staging. Make investments Radiol. 2021;56:42–9.

    PubMed 
    Article 

    Google Scholar
     

  • Yang Z, Duan J, Wang J, Liu Q, Shang R, Yang X, et al. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA focused supply in hepatocellular carcinoma remedy. Int J Nanomed. 2018;13:1851–65.

    CAS 
    Article 

    Google Scholar
     

  • Setua S, Khan S, Yallapu MM, Behrman SW, Sikander M, Khan SS, et al. Restitution of tumor suppressor microRNA-145 utilizing magnetic nanoformulation for pancreatic most cancers remedy. J Gastrointest Surg. 2017;21:94–105.

    PubMed 
    Article 

    Google Scholar
     

  • Nagesh P, Chowdhury P, Hatami E, Boya V, Kashyap V, Khan S, et al. miRNA-205 nanoformulation sensitizes prostate most cancers cells to chemotherapy. Cancers (Basel). 2018;10:289.

    Article 
    CAS 

    Google Scholar
     

  • Luo X, Peng X, Hou J, Wu S, Shen J, Wang L. Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic brokers for magnetic resonance imaging and PD-L1 siRNA supply for gastric most cancers. Int J Nanomed. 2017;12:5331–43.

    CAS 
    Article 

    Google Scholar
     

  • Unterweger H, Janko C, Schwarz M, Dézsi L, Urbanics R, Matuszak J, et al. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable distinction agent for magnetic resonance imaging. Int J Nanomed. 2017;12:5223–38.

    CAS 
    Article 

    Google Scholar
     

  • Arami S, Rashidi M, Mahdavi M, Fathi M, Entezami A. Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA supply system. Hum Exp Toxicol. 2017;36:227–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U. Loading of gemcitabine on chitosan magnetic nanoparticles will increase the anti-cancer efficacy of the drug. Eur J Pharmacol. 2016;784:121–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu M-C, Jin S, Zheng M, Wang Y, Zhao P, Tang D, et al. Daunomycin-loaded superparamagnetic iron oxide nanoparticles: preparation, magnetic concentrating on, cell cytotoxicity, and protein supply analysis. J Biomater Appl. 2016;31:261–72.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Track M, Kim Y-J, Kim Y-H, Roh J, Kim E-C, Lee HJ, et al. Lengthy-term results of magnetically focused ferumoxide-labeled human neural stem cells in focal cerebral ischemia. Cell Transplant. 2015;24(2):183–90.

    PubMed 
    Article 

    Google Scholar
     

  • Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging. 2008;1(5):624–34.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, et al. Intramural supply of rapamycin with αvβ3-targeted paramagnetic nanoparticles inhibits stenosis after balloon damage. Arterioscler Thromb Vasc Biol. 2008;28:820–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Friedrich RP, Zaloga J, Schreiber E, Tóth IY, Tombácz E, Lyer S, et al. Tissue plasminogen activator binding to superparamagnetic iron oxide nanoparticle—covalent versus adsorptive method. Nanoscale Res Lett. 2016;11(1):297.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tadayon A, Jamshidi R, Esmaeili A. Supply of tissue plasminogen activator and streptokinase magnetic nanoparticles to focus on vascular illnesses. Int J Pharm. 2015;495:428–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma Y-H, Wu S-Y, Wu T, Chang Y-J, Hua M-Y, Chen J-P. Magnetically focused thrombolysis with recombinant tissue plasminogen activator certain to polyacrylic acid-coated nanoparticles. Biomaterials. 2009;30:3343–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, et al. Tumor penetrating theranostic nanoparticles for enhancement of focused and image-guided drug supply into peritoneal tumors following intraperitoneal supply. Theranostics. 2017;7(6):1689–704.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen P, Jiang X, Huang Okay, Hu P, Li X, Wei L, et al. Multimode microRNA sensing through a number of enzyme-free sign amplification and cation-exchange response. ACS Appl Mater Interfaces. 2019;11(40):36476–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li X, Zhao J, Xu R, Pan L, Liu Y-M. Mass spectrometric quantification of microRNAs in organic samples primarily based on multistage sign amplification. Analyst. 2020;145:1783–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nourani S, Ghourchian H, Boutorabi SM. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B floor antigen. Anal Biochem. 2013;441:1–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N. An impedimetric DNA sensor primarily based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators B Chem. 2008;134(2):755–60.

    CAS 
    Article 

    Google Scholar
     

  • Tian B, Han Y, Wetterskog E, Donolato M, Hansen MF, Svedlindh P, et al. MicroRNA detection by DNAzyme-mediated disintegration of magnetic nanoparticle assemblies. ACS Sens. 2018;3(9):1884–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang F, Luo L, Gong H, Chen C, Cai C. A magnetic molecularly imprinted optical chemical sensor for particular recognition of hint portions of virus. RSC Adv. 2018;8:32262–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rohiwal SS, Dvorakova N, Klima J, Vaskovicova M, Senigl F, Slouf M, et al. Polyethylenimine primarily based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome modifying. Sci Rep. 2020;10:4619.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Farre C, Viezzi S, Wright A, Robin P, Lejal N, Manzano M, et al. Particular and delicate detection of Influenza A virus utilizing a biotin-coated nanoparticle enhanced immunomagnetic assay. Anal Bioanal Chem. 2022;414:265–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bi S, Chen M, Jia X, Dong Y. A hot-spot-active magnetic graphene oxide substrate for microRNA detection primarily based on cascaded chemiluminescence resonance power switch. Nanoscale. 2015;7:3745–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • About the author

    admin

    Leave a Comment