Fadeel, B. et al. Superior instruments for the security evaluation of nanomaterials. Nat. Nanotechnol. 13, 537–543 (2018).
Winkler, D. A. Position of synthetic intelligence and machine studying in nanosafety. Small 16, 2001883 (2020).
Cherkasov, A. et al. QSAR modeling: the place have you ever been? The place are you going to? J. Med. Chem. 57, 4977–5010 (2014).
Fourches, D. et al. Quantitative nanostructure-activity relationship modeling. ACS Nano 4, 5703–5712 (2010).
Puzyn, T. et al. Utilizing nano-QSAR to foretell the cytotoxicity of metallic oxide nanoparticles. Nat. Nanotechnol. 6, 175–178 (2011).
Jeliazkova, N. et al. In direction of FAIR nanosafety information. Nat. Nanotechnol. 16, 644–654 (2021).
Rybińska-Fryca, A., Mikolajczyk, A. & Puzyn, T. Construction–exercise prediction networks (SAPNets): a step past Nano-QSAR for efficient implementation of the safe-by-design idea. Nanoscale 12, 20669–20676 (2020).
Marchese Robinson, R. L. et al. How ought to the completeness and high quality of curated nanomaterial information be evaluated? Nanoscale 8, 9919–9943 (2016).
Muratov, E. N. et al. QSAR with out borders. Chem. Soc. Rev. https://doi.org/10.1039/d0cs00098a (2020).
Stone, V. et al. A framework for grouping and read-across of nanomaterials- supporting innovation and danger evaluation. Nano Right now https://doi.org/10.3390/nano10102017 (2020).
Papadiamantis, A. G. et al. Predicting cytotoxicity of metallic oxide nanoparticles utilizing Isalos Analytics Platform. Nanomaterials 10, 2493 (2020).
Puzyn, T. et al. in Latest Advances in Qsar Research: Strategies and Purposes Vol. 8 (eds. Puzyn, T. et al.) 127–176 (Springer, 2010).
Shoombuatong, W. et al. in Advances in QSAR Modeling (Ed. Roy, Ok.) 3–55 (Springer, 2017).
Karakus, C. O. & Winkler, D. A. Overcoming roadblocks in computational roadmaps to the long run for protected nanotechnology. Nano Futures 5, 22002 (2021).
Haase, A. & Klaessig, F. (eds) EU US roadmap nanoinformatics 2030. Zenodo https://doi.org/10.5281/zenodo.1486012 (2018).
Mech, A. et al. Insights into potentialities for grouping and read-across for nanomaterials in EU chemical compounds laws. Nanotoxicology 13, 119–141 (2019).
Miernicki, M., Hofmann, T., Eisenberger, I., von der Kammer, F. & Praetorius, A. Authorized and sensible challenges in classifying nanomaterials based on regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019).
Regulation (EC) No 1907/2006 of the European Parliament and of the Council (EUR-Lex, 18 December 2006); https://eur-lex.europa.eu/eli/reg/2006/1907/2014-04-10
Fee Regulation (EU) 2018/1881 (EUR-Lex, 3 December 2018); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1881
Subbotina, J. & Lobaskin, V. Multiscale modeling of bio-nano interactions of zero-valent silver nanoparticles. J. Phys. Chem. B 126, 1301–1314 (2022).
Kochev, N., Jeliazkova, N. & Tsakovska, I. in Points in Toxicology (eds. Neagu, D., Richarz, A.-N.) 69–107 (The Royal Society of Chemistry, 2020).
Fee Regulation (EU) 2018/1881 of three December 2018 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Analysis, Authorisation and Restriction of Chemical substances (REACH) as regards Annexes I, III,VI, V (European Fee, 2018).
Steerage on Info Necessities and Chemical Security Evaluation: Appendix R.6-1 for Nanomaterials Relevant to the Steerage on QSARs and Grouping of Chemical substances Model 2.0, 3 (ECHA, 2019); https://doi.org/10.2823/273911
Burello, E. Assessment of (Q)SAR fashions for regulatory evaluation of nanomaterials dangers. NanoImpact 8, 48–58 (2017).
Lynch, I., Weiss, C. & Valsami-Jones, E. A method for grouping of nanomaterials primarily based on key physico-chemical descriptors as a foundation for safer-by-design NMs. Nano Right now 9, 266–270 (2014).
Lynch, I., Afantitis, A., Leonis, G., Melagraki, G. & Valsami-Jones, E. in Advances in QSAR modeling. Challenges and Advances in Computational Chemistry and Physics Vol. 24 (Ed. Roy, Ok.) 385–424 (Springer, 2017).
Lynch, I. & Lee, R. G. in Innovation, Know-how, and Data Administration (eds. Murphy, F. et al.) 145–169 (Springer, 2016).
Mülhopt, S. et al. Characterization of nanoparticle batch-to-batch variability. Nanomaterials 8, 311 (2018).
Yao, Y. et al. Excessive-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl Acad. Sci. USA 117, 6316–6322 (2020).
Kluender, E. J. et al. Catalyst discovery by megalibraries of nanomaterials. Proc. Natl Acad. Sci. USA 116, 40–45 (2019).
Poisonous Substances Management Act (US EPA,1979): https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act
TSCA Stock Standing of Nanoscale Substances – Normal Method (US EPA, 2008); https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under
Nano-InChI working group; https://www.inchi-trust.org/nanomaterials/
Lynch, I. et al. Can an InChI for nano handle the necessity for a simplified illustration of advanced nanomaterials throughout experimental and nanoinformatics research? Nanomaterials 10, (2020).
Toropova, A. P. & Toropov, A. A. Nanomaterials: Quasi-SMILES as a versatile foundation for regulation and environmental danger evaluation. Sci. Complete Environ. 823, 153747 (2022).
Toropov, A. A., Sizochenko, N., Toropova, A. P. & Leszczynski, J. In direction of the event of worldwide nano-quantitative structure-property relationship fashions: zeta potentials of metallic oxide nanoparticles. Nanomaterials 8, 243 (2018).
Mikolajczyk, A. et al. Nano-QSAR modeling for ecosafe design of heterogeneous TiO2-based nano-photocatalysts. Environ. Sci. Nano 5, 1150–1160 (2018).
Mikolajczyk, A. et al. A chemoinformatics method for the characterization of hybrid nanomaterials: safer and environment friendly design perspective. Nanoscale 11, 11808–11818 (2019).
Roy, J., Ojha, P. Ok. & Roy, Ok. Danger evaluation of heterogeneous TiO2-based engineered nanoparticles (NPs): a QSTR method utilizing easy periodic desk primarily based descriptors. Nanotoxicology 13, 701–716 (2019).
Svendsen, C. et al. Key ideas and operational practices for improved nanotechnology environmental publicity evaluation. Nat. Nanotechnol. 15, 731–742 (2020).
Amos, J. D. et al. The NanoInformatics Data Commons: capturing spatial and temporal nanomaterial transformations in numerous methods. NanoImpact 23, 100331 (2021).
Di Cristo, L. et al. Grouping hypotheses and an built-in method to testing and evaluation of nanomaterials following oral ingestion. Nanomaterials 11, 2623 (2021).
Afantitis, A., Melagraki, G., Tsoumanis, A., Valsami-Jones, E. & Lynch, I. A nanoinformatics choice assist software for the digital screening of gold nanoparticle mobile affiliation utilizing protein corona fingerprints. Nanotoxicology 12, 1148–1165 (2018).
Wyrzykowska, E., Mikolajczyk, A., Sikorska, C. & Puzyn, T. Growth of a novel in silico mannequin of zeta potential for metallic oxide nanoparticles: a nano-QSPR method. Nanotechnology 27, 1–8 (2016).
Mikolajczyk, A. et al. Zeta potential for metallic oxide nanoparticles: a predictive mannequin developed by a nano-quantitative structure-property relationship method. Chem. Mater. 27, 2400–2407 (2015).
Grzelczak, M., Liz-Marzan, L. M. & Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 48, 1342–1361 (2019).
Liu, Y., Zhu, S., Gu, Z., Chen, C. & Zhao, Y. Toxicity of manufactured nanomaterials. Particuology 69, 31–48 (2022).
Baer, D. R., Munusamy, P. & Thrall, B. D. Provenance info as a software for addressing engineered nanoparticle reproducibility challenges. Biointerphases 11, 04B401 (2016).
Mancardi, G. et al. Multi-scale modelling of aggregation of TiO2 nanoparticle suspensions in water. Nanomaterials 12, 217 (2022).
Alsharif, S. A., Energy, D., Rouse, I. & Lobaskin, V. In silico prediction of protein adsorption power on titanium dioxide and gold nanoparticles. Nanomaterials 10, 1967 (2020).
Rouse, I. et al. First ideas characterisation of bio–nano interface. Phys. Chem. Chem. Phys. 23, 13473–13482 (2021).
Rouse, I. & Lobaskin, V. A tough-sphere mannequin of protein corona formation on spherical and cylindrical nanoparticles. Biophys. J. 120, 4457–4471 (2021).
Buzea, C., Pacheco, I. I. & Robbie, Ok. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).
Rabanel, J.-M. et al. Nanoparticle heterogeneity: an rising structural parameter influencing particle destiny in organic media? Nanoscale 11, 383–406 (2019).
Adjei, I. M., Peetla, C. & Labhasetwar, V. Heterogeneity in nanoparticles influences biodistribution and concentrating on. Nanomedicine 9, 267–278 (2014).
Appendix for Nanoforms Relevant to the Steerage on Registration and Substance Identification (ECHA, 2019); https://doi.org/10.2823/832485
Caputo, F., Clogston, J., Calzolai, L., Rösslein, M. & Prina-Mello, A. Measuring particle dimension distribution of nanoparticle enabled medicinal merchandise, the joint view of EUNCL and NCI-NCL. A step-by-step method combining orthogonal measurements with rising complexity. J. Management. Launch 299, 31–43 (2019).
Lundqvist, M. et al. The evolution of the protein corona round nanoparticles: A take a look at research. ACS Nano 5, 7503–7509 (2011).
Chetwynd, A. J., Zhang, W., Thorn, J. A., Lynch, I. & Ramautar, R. The nanomaterial metabolite corona decided utilizing a quantitative metabolomics method: a pilot research. Small 16, 2000295 (2020).
Yan, X. et al. In silico profiling nanoparticles: predictive nanomodeling utilizing common nanodescriptors and varied machine studying approaches. Nanoscale 11, 8352–8362 (2019).
Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Building of a web-based nanomaterial database by massive information curation and modeling pleasant nanostructure annotations. Nat. Commun. 11, 1–10 (2020).
Sizochenko, N. et al. From fundamental physics to mechanisms of toxicity: the ‘liquid drop’ method utilized to develop predictive classification fashions for toxicity of metallic oxide nanoparticles. Nanoscale 6, 13986–13993 (2014).
Sizochenko, N., Jagiello, Ok., Leszczynski, J. & Puzyn, T. How the ‘liquid drop’ method could possibly be effectively utilized for quantitative structure-property relationship modeling of nanofluids. J. Phys. Chem. C 119, 25542–25547 (2015).
Utembe, W., Potgieter, Ok., Stefaniak, A. B. & Gulumian, M. Dissolution and biodurability: Essential parameters wanted for danger evaluation of nanomaterials. Half. Fibre Toxicol. 12, 11 (2015).
Lin, S. et al. Zebrafish high-throughput screening to check the impression of dissolvable metallic oxide nanoparticles on the hatching enzyme, ZHE1. Small 9, 1776–1785 (2013).
Kokot, H. et al. Prediction of power irritation for inhaled particles: the impression of fabric biking and quarantining within the lung epithelium. Adv. Mater. 32, 2003913 (2020).
Ellis, L.-J. A. & Lynch, I. Mechanistic insights into toxicity pathways induced by nanomaterials in Daphnia magna from evaluation of the composition of the acquired protein corona. Environ. Sci. Nano 7, 3343–3359 (2020).
Uhlen, M. et al. In direction of a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).
Wheeler, Ok. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).
Smythers, A. L. & Hicks, L. M. Mapping the plant proteome: instruments for surveying coordinating pathways. Emerg. Prime. Life Sci. 5, 203–220 (2021).
Jagiello, Ok. et al. Transcriptomics-based and AOP-informed structure-activity relationships to foretell pulmonary pathology induced by multiwalled carbon nanotubes. Small 17, 2003465 (2020).
Myden, A., Hill, E. & Fowkes, A. Utilizing antagonistic consequence pathways to contextualise (Q)SAR predictions for reproductive toxicity – a case research with aromatase inhibition. Reprod. Toxicol. 108, 43–55 (2022).
Ellison, C. M., Piechota, P., Madden, J. C., Enoch, S. J. & Cronin, M. T. D. Antagonistic consequence pathway (AOP) knowledgeable modeling of aquatic toxicology: QSARs, read-across, and interspecies verification of modes of motion. Environ. Sci. Technol. 50, 3995–4007 (2016).
Search engine optimization, M., Chae, C. H., Lee, Y., Kim, H. R. & Kim, J. Novel QSAR fashions for molecular initiating occasion modeling in two intersecting antagonistic consequence pathways primarily based pulmonary fibrosis prediction for biocidal mixtures. Toxics 9, 59 (2021).
Halappanavar, S. et al. Antagonistic consequence pathways as a software for the design of testing methods to assist the security evaluation of rising superior supplies on the nanoscale. Half. Fibre Toxicol. 17, 16 (2020).
Toropova, A. P., Toropov, A. A. & Benfenati, E. QSPR as a random occasion: solubility of fullerenes C[60] and C[70]. Fuller. Nanotub. Carbon Nanostruct. 27, 816–821 (2019).
Toropov, A. A. & Toropova, A. P. Quasi-SMILES and nano-QFAR: united mannequin for mutagenicity of fullerene and MWCNT below totally different circumstances. Chemosphere 139, 18–22 (2015).