Nanotechnology

Nanotechnology-based methods in opposition to SARS-CoV-2 variants

Nanotechnology-based methods in opposition to SARS-CoV-2 variants
Written by admin


  • Florindo, H. F. et al. Immune-mediated approaches in opposition to COVID-19. Nat. Nanotechnol. 15, 630–645 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tang, Z. et al. A supplies science perspective on tackling COVID-19. Nat. Rev. Mater. 5, 847–860 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tang, Z. et al. Insights from nanotechnology in COVID-19 remedy. Nano Right now 36, 101019 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Sadarangani, M., Marchant, A. & Kollmann, T. R. Immunological mechanisms of vaccine-induced safety in opposition to COVID-19 in people. Nat. Rev. Immunol. 21, 475–484 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Polack, F. P. et al. Security and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kirtane, A. R. et al. Nanotechnology approaches for world infectious illnesses. Nat. Nanotechnol. 16, 369–384 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Monitoring SARS-CoV-2 variants. WHO https://www.who.int/en/actions/tracking-SARS-CoV-2-variants/ (2022).

  • Krause, P. R. et al. SARS-CoV-2 variants and vaccines. N. Engl. J. Med. 385, 179–186 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Callaway, E. The coronavirus is mutating—does it matter? Nature 585, 174–178 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Williams, T. C. & Burgers, W. A. SARS-CoV-2 evolution and vaccines: trigger for concern? Lancet Respir. Med. 9, 333–335 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bian, L. et al. Results of SARS-CoV-2 variants on vaccine efficacy and response methods. Knowledgeable Rev. Vaccines 20, 365–373 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Cohn, B. A., Cirillo, P. M., Murphy, C. C., Krigbaum, N. Y. & Wallace, A. W. SARS-CoV-2 vaccine safety and deaths amongst US veterans throughout 2021. Science 375, 331–336 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Hoffmann, M. et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 184, 2384–2393.e2312 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Liu, C. et al. Diminished neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 184, 4220–4236.e4213 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lucas, C. et al. Affect of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 600, 523–529 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Greaney, A. J. et al. Mapping mutations to the SARS-CoV-2 RBD that escape binding by totally different courses of antibodies. Nat. Commun. 12, 4196 (2021).

    CAS 
    Article 

    Google Scholar
     

  • COG-UK Mutation Explorer (COG-UK, 2021); https://sars2.cvr.gla.ac.uk/cog-uk/

  • Planas, D. et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 27, 917–924 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Choi, A. et al. Serum neutralizing exercise of mRNA-1273 in opposition to SARS-CoV-2 variants. J. Virol. 95, e01313–01321 (2021).


    Google Scholar
     

  • Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283–e284 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Dejnirattisai, W. et al. Antibody evasion by the P.1 pressure of SARS-CoV-2. Cell 184, 2939–2954.e2939 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Liu, J. et al. BNT162b2-elicited neutralization of B.1.617 and different SARS-CoV-2 variants. Nature 596, 273–275 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stamatatos, L. et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 an infection. Science 372, 1413–1418 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Levin, E. G. et al. Waning immune humoral response to BNT162b2 COVID-19 vaccine over 6 months. N. Engl. J. Med. 385, e84 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Thomas, S. J. et al. Security and efficacy of the BNT162b2 mRNA COVID-19 vaccine by 6 months. N. Engl. J. Med. 385, 1761–1773 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Scott, J., Richterman, A. & Cevik, M. COVID-19 vaccination: proof of waning immunity is overstated. Brit. Med. J. 374, n2320 (2021).

    Article 

    Google Scholar
     

  • Karim, S. S. A. & Karim, Q. A. Omicron SARS-CoV-2 variant: a brand new chapter within the COVID-19 pandemic. Lancet 398, 2126–2128 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Schmidt, F. et al. Plasma neutralization of the SARS-CoV-2 Omicron variant. N. Engl. J. Med. 386, 599–601 (2021).

    Article 

    Google Scholar
     

  • Takashita, E. et al. Efficacy of antibodies and antiviral medicine in opposition to COVID-19 Omicron variant. N. Engl. J. Med. 386, 995–998 (2022).

    Article 

    Google Scholar
     

  • Rössler, A., Riepler, L., Bante, D., von Laer, D. & Kimpel, J. SARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent individuals. N. Engl. J. Med. 386, 698–700 (2022).

    Article 

    Google Scholar
     

  • Altarawneh, H. N. et al. Safety in opposition to the Omicron variant from earlier SARS-CoV-2 an infection. N. Engl. J. Med. 386, 1288–1290 (2022).

    Article 

    Google Scholar
     

  • VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 28, 490–495 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Elia, U. et al. Design of SARS-CoV-2 hFc-conjugated receptor-binding area mRNA vaccine delivered by way of lipid nanoparticles. ACS Nano 15, 9627–9637 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Elia, U. et al. Lipid nanoparticle RBD-hFc mRNA vaccine protects hACE2 transgenic mice in opposition to a deadly SARS-CoV-2 an infection. Nano Lett. 21, 4774–4779 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kon, E., Elia, U. & Peer, D. Ideas for designing an optimum mRNA lipid nanoparticle vaccine. Curr. Opin. Biotechnol. 73, 329–336 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Baumjohann, D. & Fazilleau, N. Antigen-dependent multistep differentiation of T follicular helper cells and its function in SARS-CoV-2 an infection and vaccination. Eur. J. Immunol. 51, 1325–1333 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Pardi, N. et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal middle B cell responses. J. Exp. Med. 215, 1571–1588 (2018). This examine demonstrates how modified mRNA-LNP vaccines induce extremely potent and sturdy neutralizing antibody responses.

    CAS 
    Article 

    Google Scholar
     

  • Lederer, Okay. et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal middle responses related to neutralizing antibody technology. Immunity 53, 1281–1295.e1285 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Alameh, M.-G. et al. Lipid nanoparticles improve the efficacy of mRNA and protein subunit vaccines by inducing strong T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e2877 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Teijaro, J. R. & Farber, D. L. COVID-19 vaccines: modes of immune activation and future challenges. Nat. Rev. Immunol. 21, 195–197 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kamar, N. et al. Three doses of an mRNA COVID-19 vaccine in solid-organ transplant recipients. N. Engl. J. Med. 385, 661–662 (2021).

    Article 

    Google Scholar
     

  • Corridor, V. G. et al. Randomized trial of a 3rd dose of mRNA-1273 vaccine in transplant recipients. N. Engl. J. Med. 385, 1244–1246 (2021).

    Article 

    Google Scholar
     

  • Falsey, A. R. et al. SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3. N. Engl. J. Med. 385, 1627–1629 (2021).

    Article 

    Google Scholar
     

  • Nemet, I. et al. Third BNT162b2 vaccination neutralization of SARS-CoV-2 Omicron an infection. N. Engl. J. Med. 386, 492–494 (2021). This examine reveals {that a} third dose does elicit Omicron neutralizing antibodies shortly after administration.

    Article 

    Google Scholar
     

  • Pajon, R. et al. SARS-CoV-2 Omicron variant neutralization after mRNA-1273 booster vaccination. N. Engl. J. Med. 386, 1088–1091 (2022).

    Article 

    Google Scholar
     

  • Wu, M. et al. Three-dose vaccination elicits neutralising antibodies in opposition to Omicron. Lancet 399, 715–717 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Tanne, J. H. COVID-19: Moderna plans booster doses to counter variants. Brit. Med. J. 372, n232 (2021).

    Article 

    Google Scholar
     

  • Choi, A. et al. Security and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in wholesome adults: an interim evaluation. Nat. Med. 27, 2025–2031 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Yang, Y. & Du, L. SARS-CoV-2 spike protein: a key goal for eliciting persistent neutralizing antibodies. Sign Transduct. Goal. Ther. 6, 95 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lan, J. et al. Construction of the SARS-CoV-2 spike receptor-binding area sure to the ACE2 receptor. Nature 581, 215–220 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Martinez, D. R. et al. Chimeric spike mRNA vaccines defend in opposition to Sarbecovirus problem in mice. Science 373, 991–998 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xiao, Y. et al. Rising mRNA applied sciences: Supply methods and biomedical functions. Chem. Soc. Rev. 51, 3828–3845 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Qu, L. et al. Round RNA vaccines in opposition to SARS-CoV-2 and rising variants. Cell 185, 1–17 (2022). This report describes round RNA vaccines for SARS-CoV-2 and its variants.

    Article 
    CAS 

    Google Scholar
     

  • Beaudoin, C. A., Bartas, M., Volná, A., Pečinka, P. & Blundell, T. L. Are there hidden genes in DNA/RNA vaccines? Entrance. Immunol. 13, 801915 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Saunders, Okay. O. et al. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature 594, 553–559 (2021). This examine gives a promising protein nanoparticle platform for creating pancoronavirus vaccines.

    CAS 
    Article 

    Google Scholar
     

  • Saunders, Okay. O. et al. Focused collection of HIV-specific antibody mutations by engineering B cell maturation. Science 366, eaay7199 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Houser, Okay. V. et al. Security and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in wholesome adults: a section 1 trial. Nat. Med. 28, 383–391 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Li, D. et al. In vitro and in vivo features of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 184, 4203–4219.e4232 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Partitions, A. C. et al. Elicitation of broadly protecting sarbecovirus immunity by receptor-binding area nanoparticle vaccines. Cell 184, 5432–5447 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Partitions, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367–1382.e1317 (2020).

    CAS 
    Article 

    Google Scholar
     

  • He, L. et al. Single-component, self-assembling, protein nanoparticles presenting the receptor binding area and stabilized spike as SARS-CoV-2 vaccine candidates. Sci. Adv. 7, eabf1591 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y.-N. et al. Mechanism of a COVID-19 nanoparticle vaccine candidate that elicits a broadly neutralizing antibody response to SARS-CoV-2 variants. Sci. Adv. 7, eabj3107 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Aves, Okay.-L., Goksøyr, L. & Sander, A. F. Benefits and prospects of Tag/Catcher mediated antigen show on capsid-like particle-based vaccines. Viruses 12, 185 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Janitzek, C. M. et al. A proof-of-concept examine for the design of a VLP-based combinatorial HPV and placental malaria vaccine. Sci. Rep. 9, 5260 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Brune, Okay. D. & Howarth, M. New routes and alternatives for modular development of particulate vaccines: stick, click on, and glue. Entrance. Immunol. 9, 1432 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Muyldermans, S. Nanobodies: pure single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Vanlandschoot, P. et al. Nanobodies®: new ammunition to battle viruses. Antiviral Res. 92, 389–407 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Detalle, L. et al. Technology and characterization of ALX-0171, a potent novel therapeutic nanobody for the remedy of respiratory syncytial virus an infection. Antimicrob. Brokers Chemother. 60, 6–13 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Xiang, Y. et al. Versatile and multivalent nanobodies effectively neutralize SARS-CoV-2. Science 370, 1479–1484 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Schoof, M. et al. An ultrapotent artificial nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 370, 1473–1479 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Solar, D. et al. Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by focusing on numerous and conserved epitopes. Nat. Commun. 12, 4676 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xu, J. et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature 595, 278–282 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Koenig, P.-A. et al. Construction-guided multivalent nanobodies block SARS-CoV-2 an infection and suppress mutational escape. Science 371, eabe6230 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Saelens, X. & Schepens, B. Single-domain antibodies make a distinction. Science 371, 681–682 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Güttler, T. et al. Neutralization of SARS-CoV-2 by extremely potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J. 40, e107985 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ku, Z. et al. Nasal supply of an IgM provides broad safety from SARS-CoV-2 variants. Nature 595, 718–723 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Tada, T. et al. An ACE2 microbody containing a single immunoglobulin Fc area is a potent inhibitor of SARS-CoV-2. Cell Rep. 33, 108528 (2020).

    CAS 
    Article 

    Google Scholar
     

  • El-Shennawy, L. et al. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nat. Commun. 13, 405 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, H. et al. Inhalable nanocatchers for SARS-CoV-2 inhibition. Proc. Natl Acad. Sci. USA 118, e2102957118 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 an infection. ACS Nano 15, 6340–6351 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Z. et al. Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. Matter 5, 336–362 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xie, F. et al. Engineering extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 remedy. Adv. Mater. 33, 2103471 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, Z. et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung harm in a non-human primate mannequin of COVID-19. Nat. Nanotechnol. 16, 942–951 (2021). This examine describes a nanodecoy that displays post-infection therapeutic results for SARS-CoV-2.

  • Rao, L. et al. Decoy nanoparticles defend in opposition to COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc. Natl Acad. Sci. USA 117, 27141–27147 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Q. et al. Mobile nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 20, 5570–5574 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ai, X. et al. Floor glycan modification of mobile nanosponges to advertise SARS-CoV-2 inhibition. J. Am. Chem. Soc. 143, 17615–17621 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, M. et al. Secreted expression of mRNA-encoded truncated ACE2 variants for SARS-CoV-2 by way of lipid-like nanoassemblies. Adv. Mater. 33, 2101707 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kim, J., Mukherjee, A., Nelson, D., Jozic, A. & Sahay, G. Fast technology of circulating and mucosal decoy ACE2 utilizing mRNA nanotherapeutics for the potential remedy of SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2020.07.24.205583 (2020).

  • Zoufaly, A. et al. Human recombinant soluble ACE2 in extreme COVID-19. Lancet Respir. Med. 8, 1154–1158 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues utilizing clinical-grade soluble human ACE2. Cell 181, 905–913.e907 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Haschke, M. et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in wholesome human topics. Clin. Pharmacokinet. 52, 783–792 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Romero, C. A., Orias, M. & Weir, M. R. Novel RAAS agonists and antagonists: scientific functions and controversies. Nat. Rev. Endocrinol. 11, 242–252 (2015).

    CAS 
    Article 

    Google Scholar
     

  • South, A. M. et al. Fetal programming and the angiotensin-(1-7) axis: a overview of the experimental and scientific knowledge. Clin. Sci. 133, 55–74 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Warner, F. J., Rajapaksha, H., Shackel, N. & Herath, C. B. ACE2: from safety of liver illness to propagation of COVID-19. Clin. Sci. 134, 3137–3158 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Chan, Okay. Okay. et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 369, 1261–1265 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Glasgow, A. et al. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 28046–28055 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Chan, Okay. Okay., Tan, T. J. C., Narayanan, Okay. Okay. & Procko, E. An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants. Sci. Adv. 7, eabf1738 (2021).

    Article 

    Google Scholar
     

  • Higuchi, Y. et al. Engineered ACE2 receptor remedy overcomes mutational escape of SARS-CoV-2. Nat. Commun. 12, 3802 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, L. et al. Engineered ACE2 decoy mitigates lung harm and loss of life induced by SARS-CoV-2 variants. Nat. Chem. Biol. 18, 342–351 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Jackman, J. A. et al. Therapeutic remedy of Zika virus an infection utilizing a brain-penetrating antiviral peptide. Nat. Mater. 17, 971–977 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Peplow, M. Nanotechnology provides alternative routes to struggle COVID-19 pandemic with antivirals. Nat. Biotechnol. 39, 1172–1174 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Yoon, B. Okay., Jeon, W.-Y., Sut, T. N., Cho, N.-J. & Jackman, J. A. Stopping membrane-enveloped viruses with nanotechnology methods: towards antiviral drug growth and pandemic preparedness. ACS Nano 15, 125–148 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Paull, J. R. A. et al. Protecting results of astodrimer sodium 1% nasal spray formulation in opposition to SARS-CoV-2 nasal problem in K18-hACE2 mice. Viruses 13, 1656 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Nie, C. et al. Spiky nanostructures with geometry-matching topography for virus inhibition. Nano Lett. 20, 5367–5375 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kwon, P. S. et al. Designer DNA structure provides exact and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021). This examine demonstrates the opportunity of utilizing DNA structure to seize virus.

    CAS 
    Article 

    Google Scholar
     

  • Saccà, B. & Niemeyer, C. M. DNA origami: the artwork of folding DNA. Angew. Chem. Int. Ed. 51, 58–66 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Eli Lilly, Regeneron antibody therapies lose out in opposition to Omicron. The Irish Occasions (14 December 2021); https://www.irishtimes.com/enterprise/health-pharma/eli-lilly-regeneron-antibody-therapies-lose-out-against-omicron-1.4755091

  • Du, S. et al. Buildings of SARS-CoV-2 B.1.351 neutralizing antibodies present insights into cocktail design in opposition to regarding variants. Cell Res. 31, 1130–1133 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, L. et al. Ultrapotent antibodies in opposition to numerous and extremely transmissible SARS-CoV-2 variants. Science 373, eabh1766 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Dussupt, V. et al. Low-dose in vivo safety and neutralization throughout SARS-CoV-2 variants by monoclonal antibody mixtures. Nat. Immunol. 22, 1503–1514 (2021).

    CAS 
    Article 

    Google Scholar
     

  • De Gasparo, R. et al. Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature 593, 424–428 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Szijj, P. & Chudasama, V. The renaissance of chemically generated bispecific antibodies. Nat. Rev. Chem. 5, 78–92 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Shatz, W. et al. Ferritin as a pure protein scaffold: constructing a multivalent ferritin–Fab conjugate. LCGC Suppl. 37, 30–35 (2019).

    CAS 

    Google Scholar
     

  • Beigel, J. H. et al. Remdesivir for the remedy of COVID-19—ultimate report. N. Engl. J. Med. 383, 1813–1826 (2020).

    CAS 
    Article 

    Google Scholar
     

  • The RECOVERY Collaborative Group Dexamethasone in hospitalized sufferers with COVID-19. N. Engl. J. Med. 384, 693–704 (2020).

    Article 

    Google Scholar
     

  • Mahase, E. COVID-19: Pfizer’s paxlovid is 89% efficient in sufferers liable to severe sickness, firm experiences. Brit. Med. J. 375, n2713 (2021).

    Article 

    Google Scholar
     

  • Saul, S. & Einav, S. Previous medicine for a brand new virus: repurposed approaches for combating COVID-19. ACS Infect. Dis. 6, 2304–2318 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Cao, Y. The influence of the hypoxia-VEGF-vascular permeability on COVID-19-infected sufferers. Exploration 1, 20210051 (2021).

    Article 

    Google Scholar
     

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles within the clinic: an replace submit COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).

    CAS 

    Google Scholar
     

  • Zhao, Z. et al. Glycyrrhizic acid nanoparticles as antiviral and anti inflammatory brokers for COVID-19 remedy. ACS Appl. Mater. Interfaces 13, 20995–21006 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Liu, J., Wan, M., Lyon, C. J. & Hu, T. Y. Nanomedicine therapies modulating macrophage dysfunction: a possible technique to attenuate cytokine storms in extreme infections. Theranostics 10, 9591–9600 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lammers, T. et al. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 15, 622–624 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Han, X., Mitchell, M. J. & Nie, G. Nanomaterials for therapeutic RNA supply. Matter 3, 1948–1975 (2020).

    Article 

    Google Scholar
     

  • Bhattacharyya, R. P. & Hanage, W. P. Challenges in inferring intrinsic severity of the SARS-CoV-2 Omicron variant. N. Engl. J. Med. 386, e14 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Ulloa, A. C., Buchan, S. A., Daneman, N. & Brown, Okay.A. Estimates of SARS-CoV-2 Omicron variant severity in Ontario, Canada. JAMA 327, 1286–1288 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Nealon, J. & Cowling, B. J. Omicron severity: milder however not gentle. Lancet 399, 412–413 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Pulliam, J. R. C. et al. Elevated threat of SARS-CoV-2 reinfection related to emergence of Omicron in South Africa. Science 376, eabn4947 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Moderna broadcasts preliminary booster knowledge and updates technique to deal with Omicron variant. Enterprise Wire https://www.businesswire.com/information/residence/20211220005253/en/Moderna-Broadcasts-Preliminary-Booster-Information-and-Updates-Technique-to-Deal with-Omicron-Variant (2021).

  • Pfizer and BioNTech present replace on Omicron variant. Pfizer https://www.pfizer.com/information/press-release/press-release-detail/pfizer-and-biontech-provide-update-omicron-variant (2021).

  • Johnson & Johnson to guage its COVID-19 vaccine in opposition to new Omicron COVID-19 variant. Johnson & Johnson https://www.jnj.com/johnson-johnson-to-evaluate-its-covid-19-vaccine-against-new-omicron-covid-19-variant (2021).

  • Altmann, D. M., Boyton, R. J. & Beale, R. Immunity to SARS-CoV-2 variants of concern. Science 371, 1103–1104 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Tregoning, J. S., Flight, Okay. E., Higham, S. L., Wang, Z. & Pierce, B. F. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21, 626–636 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, P. et al. Elevated resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 29, 747–751.e744 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wilhelm, A. et al. Diminished neutralization of SARS-CoV-2 Omicron variant by vaccine sera and monoclonal antibodies. Preprint at MedRxiv https://www.medrxiv.org/content material/10.1101/2021.12.07.21267432v4 (2021).

  • Andrews, N. et al. COVID-19 vaccine effectiveness in opposition to the Omicron (B.1.1.529) variant. N. Engl. J. Med. 386, 1532–1546 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Enhancing Readiness for Omicron (B.1.1.529): Technical Temporary and Precedence Actions for Member States (WHO, 2021); https://www.who.int/docs/default-source/coronaviruse/2022-01-21-global-technical-brief-and-priority-action-on-omicron-sars-cov-2-variant.pdf?sfvrsn=f3ac8bc3_9&obtain=true © Springer Nature.

  • Mahase, E. COVID-19 booster vaccines: what we all know and who’s doing what. Brit. Med. J. 374, n2082 (2021).

    Article 

    Google Scholar
     

  • Kitchin, D. et al. Ad26.COV2.S breakthrough infections induce excessive titers of neutralizing antibodies in opposition to Omicron and different SARS-CoV-2 variants of concern. Cell Rep. Med. 3, 100535 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Wink, P. L. et al. First identification of SARS-CoV-2 Lambda (C.37) variant in Southern Brazil. Infect. Management Hosp. Epidemiol. 1–2 (2021).

  • Messali, S. et al. A cluster of the brand new SARS-CoV-2 B.1.621 lineage in Italy and sensitivity of the viral isolate to the BNT162b2 vaccine. J. Med. Virol. 93, 6468–6470 (2021).

    CAS 
    Article 

    Google Scholar
     

  • About the author

    admin

    Leave a Comment