Florindo, H. F. et al. Immune-mediated approaches in opposition to COVID-19. Nat. Nanotechnol. 15, 630–645 (2020).
Tang, Z. et al. A supplies science perspective on tackling COVID-19. Nat. Rev. Mater. 5, 847–860 (2020).
Tang, Z. et al. Insights from nanotechnology in COVID-19 remedy. Nano Right now 36, 101019 (2021).
Sadarangani, M., Marchant, A. & Kollmann, T. R. Immunological mechanisms of vaccine-induced safety in opposition to COVID-19 in people. Nat. Rev. Immunol. 21, 475–484 (2021).
Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
Polack, F. P. et al. Security and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).
Kirtane, A. R. et al. Nanotechnology approaches for world infectious illnesses. Nat. Nanotechnol. 16, 369–384 (2021).
Monitoring SARS-CoV-2 variants. WHO https://www.who.int/en/actions/tracking-SARS-CoV-2-variants/ (2022).
Krause, P. R. et al. SARS-CoV-2 variants and vaccines. N. Engl. J. Med. 385, 179–186 (2021).
Callaway, E. The coronavirus is mutating—does it matter? Nature 585, 174–178 (2020).
Williams, T. C. & Burgers, W. A. SARS-CoV-2 evolution and vaccines: trigger for concern? Lancet Respir. Med. 9, 333–335 (2021).
Bian, L. et al. Results of SARS-CoV-2 variants on vaccine efficacy and response methods. Knowledgeable Rev. Vaccines 20, 365–373 (2021).
Cohn, B. A., Cirillo, P. M., Murphy, C. C., Krigbaum, N. Y. & Wallace, A. W. SARS-CoV-2 vaccine safety and deaths amongst US veterans throughout 2021. Science 375, 331–336 (2022).
Hoffmann, M. et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 184, 2384–2393.e2312 (2021).
Liu, C. et al. Diminished neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 184, 4220–4236.e4213 (2021).
Lucas, C. et al. Affect of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 600, 523–529 (2021).
Greaney, A. J. et al. Mapping mutations to the SARS-CoV-2 RBD that escape binding by totally different courses of antibodies. Nat. Commun. 12, 4196 (2021).
COG-UK Mutation Explorer (COG-UK, 2021); https://sars2.cvr.gla.ac.uk/cog-uk/
Planas, D. et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 27, 917–924 (2021).
Choi, A. et al. Serum neutralizing exercise of mRNA-1273 in opposition to SARS-CoV-2 variants. J. Virol. 95, e01313–01321 (2021).
Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283–e284 (2021).
Dejnirattisai, W. et al. Antibody evasion by the P.1 pressure of SARS-CoV-2. Cell 184, 2939–2954.e2939 (2021).
Liu, J. et al. BNT162b2-elicited neutralization of B.1.617 and different SARS-CoV-2 variants. Nature 596, 273–275 (2021).
Stamatatos, L. et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 an infection. Science 372, 1413–1418 (2021).
Levin, E. G. et al. Waning immune humoral response to BNT162b2 COVID-19 vaccine over 6 months. N. Engl. J. Med. 385, e84 (2021).
Thomas, S. J. et al. Security and efficacy of the BNT162b2 mRNA COVID-19 vaccine by 6 months. N. Engl. J. Med. 385, 1761–1773 (2021).
Scott, J., Richterman, A. & Cevik, M. COVID-19 vaccination: proof of waning immunity is overstated. Brit. Med. J. 374, n2320 (2021).
Karim, S. S. A. & Karim, Q. A. Omicron SARS-CoV-2 variant: a brand new chapter within the COVID-19 pandemic. Lancet 398, 2126–2128 (2021).
Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).
Schmidt, F. et al. Plasma neutralization of the SARS-CoV-2 Omicron variant. N. Engl. J. Med. 386, 599–601 (2021).
Takashita, E. et al. Efficacy of antibodies and antiviral medicine in opposition to COVID-19 Omicron variant. N. Engl. J. Med. 386, 995–998 (2022).
Rössler, A., Riepler, L., Bante, D., von Laer, D. & Kimpel, J. SARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent individuals. N. Engl. J. Med. 386, 698–700 (2022).
Altarawneh, H. N. et al. Safety in opposition to the Omicron variant from earlier SARS-CoV-2 an infection. N. Engl. J. Med. 386, 1288–1290 (2022).
VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 28, 490–495 (2022).
Elia, U. et al. Design of SARS-CoV-2 hFc-conjugated receptor-binding area mRNA vaccine delivered by way of lipid nanoparticles. ACS Nano 15, 9627–9637 (2021).
Elia, U. et al. Lipid nanoparticle RBD-hFc mRNA vaccine protects hACE2 transgenic mice in opposition to a deadly SARS-CoV-2 an infection. Nano Lett. 21, 4774–4779 (2021).
Kon, E., Elia, U. & Peer, D. Ideas for designing an optimum mRNA lipid nanoparticle vaccine. Curr. Opin. Biotechnol. 73, 329–336 (2022).
Baumjohann, D. & Fazilleau, N. Antigen-dependent multistep differentiation of T follicular helper cells and its function in SARS-CoV-2 an infection and vaccination. Eur. J. Immunol. 51, 1325–1333 (2021).
Pardi, N. et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal middle B cell responses. J. Exp. Med. 215, 1571–1588 (2018). This examine demonstrates how modified mRNA-LNP vaccines induce extremely potent and sturdy neutralizing antibody responses.
Lederer, Okay. et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal middle responses related to neutralizing antibody technology. Immunity 53, 1281–1295.e1285 (2020).
Alameh, M.-G. et al. Lipid nanoparticles improve the efficacy of mRNA and protein subunit vaccines by inducing strong T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e2877 (2021).
Teijaro, J. R. & Farber, D. L. COVID-19 vaccines: modes of immune activation and future challenges. Nat. Rev. Immunol. 21, 195–197 (2021).
Kamar, N. et al. Three doses of an mRNA COVID-19 vaccine in solid-organ transplant recipients. N. Engl. J. Med. 385, 661–662 (2021).
Corridor, V. G. et al. Randomized trial of a 3rd dose of mRNA-1273 vaccine in transplant recipients. N. Engl. J. Med. 385, 1244–1246 (2021).
Falsey, A. R. et al. SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3. N. Engl. J. Med. 385, 1627–1629 (2021).
Nemet, I. et al. Third BNT162b2 vaccination neutralization of SARS-CoV-2 Omicron an infection. N. Engl. J. Med. 386, 492–494 (2021). This examine reveals {that a} third dose does elicit Omicron neutralizing antibodies shortly after administration.
Pajon, R. et al. SARS-CoV-2 Omicron variant neutralization after mRNA-1273 booster vaccination. N. Engl. J. Med. 386, 1088–1091 (2022).
Wu, M. et al. Three-dose vaccination elicits neutralising antibodies in opposition to Omicron. Lancet 399, 715–717 (2022).
Tanne, J. H. COVID-19: Moderna plans booster doses to counter variants. Brit. Med. J. 372, n232 (2021).
Choi, A. et al. Security and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in wholesome adults: an interim evaluation. Nat. Med. 27, 2025–2031 (2021).
Yang, Y. & Du, L. SARS-CoV-2 spike protein: a key goal for eliciting persistent neutralizing antibodies. Sign Transduct. Goal. Ther. 6, 95 (2021).
Lan, J. et al. Construction of the SARS-CoV-2 spike receptor-binding area sure to the ACE2 receptor. Nature 581, 215–220 (2020).
Martinez, D. R. et al. Chimeric spike mRNA vaccines defend in opposition to Sarbecovirus problem in mice. Science 373, 991–998 (2021).
Xiao, Y. et al. Rising mRNA applied sciences: Supply methods and biomedical functions. Chem. Soc. Rev. 51, 3828–3845 (2022).
Qu, L. et al. Round RNA vaccines in opposition to SARS-CoV-2 and rising variants. Cell 185, 1–17 (2022). This report describes round RNA vaccines for SARS-CoV-2 and its variants.
Beaudoin, C. A., Bartas, M., Volná, A., Pečinka, P. & Blundell, T. L. Are there hidden genes in DNA/RNA vaccines? Entrance. Immunol. 13, 801915 (2022).
Saunders, Okay. O. et al. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature 594, 553–559 (2021). This examine gives a promising protein nanoparticle platform for creating pancoronavirus vaccines.
Saunders, Okay. O. et al. Focused collection of HIV-specific antibody mutations by engineering B cell maturation. Science 366, eaay7199 (2019).
Houser, Okay. V. et al. Security and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in wholesome adults: a section 1 trial. Nat. Med. 28, 383–391 (2022).
Li, D. et al. In vitro and in vivo features of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 184, 4203–4219.e4232 (2021).
Partitions, A. C. et al. Elicitation of broadly protecting sarbecovirus immunity by receptor-binding area nanoparticle vaccines. Cell 184, 5432–5447 (2021).
Partitions, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367–1382.e1317 (2020).
He, L. et al. Single-component, self-assembling, protein nanoparticles presenting the receptor binding area and stabilized spike as SARS-CoV-2 vaccine candidates. Sci. Adv. 7, eabf1591 (2021).
Zhang, Y.-N. et al. Mechanism of a COVID-19 nanoparticle vaccine candidate that elicits a broadly neutralizing antibody response to SARS-CoV-2 variants. Sci. Adv. 7, eabj3107 (2021).
Aves, Okay.-L., Goksøyr, L. & Sander, A. F. Benefits and prospects of Tag/Catcher mediated antigen show on capsid-like particle-based vaccines. Viruses 12, 185 (2020).
Janitzek, C. M. et al. A proof-of-concept examine for the design of a VLP-based combinatorial HPV and placental malaria vaccine. Sci. Rep. 9, 5260 (2019).
Brune, Okay. D. & Howarth, M. New routes and alternatives for modular development of particulate vaccines: stick, click on, and glue. Entrance. Immunol. 9, 1432 (2018).
Muyldermans, S. Nanobodies: pure single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).
Vanlandschoot, P. et al. Nanobodies®: new ammunition to battle viruses. Antiviral Res. 92, 389–407 (2011).
Detalle, L. et al. Technology and characterization of ALX-0171, a potent novel therapeutic nanobody for the remedy of respiratory syncytial virus an infection. Antimicrob. Brokers Chemother. 60, 6–13 (2016).
Xiang, Y. et al. Versatile and multivalent nanobodies effectively neutralize SARS-CoV-2. Science 370, 1479–1484 (2020).
Schoof, M. et al. An ultrapotent artificial nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 370, 1473–1479 (2020).
Solar, D. et al. Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by focusing on numerous and conserved epitopes. Nat. Commun. 12, 4676 (2021).
Xu, J. et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature 595, 278–282 (2021).
Koenig, P.-A. et al. Construction-guided multivalent nanobodies block SARS-CoV-2 an infection and suppress mutational escape. Science 371, eabe6230 (2021).
Saelens, X. & Schepens, B. Single-domain antibodies make a distinction. Science 371, 681–682 (2021).
Güttler, T. et al. Neutralization of SARS-CoV-2 by extremely potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J. 40, e107985 (2021).
Ku, Z. et al. Nasal supply of an IgM provides broad safety from SARS-CoV-2 variants. Nature 595, 718–723 (2021).
Tada, T. et al. An ACE2 microbody containing a single immunoglobulin Fc area is a potent inhibitor of SARS-CoV-2. Cell Rep. 33, 108528 (2020).
El-Shennawy, L. et al. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nat. Commun. 13, 405 (2022).
Zhang, H. et al. Inhalable nanocatchers for SARS-CoV-2 inhibition. Proc. Natl Acad. Sci. USA 118, e2102957118 (2021).
Wang, C. et al. Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 an infection. ACS Nano 15, 6340–6351 (2021).
Wang, Z. et al. Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. Matter 5, 336–362 (2021).
Xie, F. et al. Engineering extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 remedy. Adv. Mater. 33, 2103471 (2021).
Li, Z. et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung harm in a non-human primate mannequin of COVID-19. Nat. Nanotechnol. 16, 942–951 (2021). This examine describes a nanodecoy that displays post-infection therapeutic results for SARS-CoV-2.
Rao, L. et al. Decoy nanoparticles defend in opposition to COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc. Natl Acad. Sci. USA 117, 27141–27147 (2020).
Zhang, Q. et al. Mobile nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 20, 5570–5574 (2020).
Ai, X. et al. Floor glycan modification of mobile nanosponges to advertise SARS-CoV-2 inhibition. J. Am. Chem. Soc. 143, 17615–17621 (2021).
Li, M. et al. Secreted expression of mRNA-encoded truncated ACE2 variants for SARS-CoV-2 by way of lipid-like nanoassemblies. Adv. Mater. 33, 2101707 (2021).
Kim, J., Mukherjee, A., Nelson, D., Jozic, A. & Sahay, G. Fast technology of circulating and mucosal decoy ACE2 utilizing mRNA nanotherapeutics for the potential remedy of SARS-CoV-2. Preprint at bioRxiv https://doi.org/10.1101/2020.07.24.205583 (2020).
Zoufaly, A. et al. Human recombinant soluble ACE2 in extreme COVID-19. Lancet Respir. Med. 8, 1154–1158 (2020).
Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues utilizing clinical-grade soluble human ACE2. Cell 181, 905–913.e907 (2020).
Haschke, M. et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in wholesome human topics. Clin. Pharmacokinet. 52, 783–792 (2013).
Romero, C. A., Orias, M. & Weir, M. R. Novel RAAS agonists and antagonists: scientific functions and controversies. Nat. Rev. Endocrinol. 11, 242–252 (2015).
South, A. M. et al. Fetal programming and the angiotensin-(1-7) axis: a overview of the experimental and scientific knowledge. Clin. Sci. 133, 55–74 (2019).
Warner, F. J., Rajapaksha, H., Shackel, N. & Herath, C. B. ACE2: from safety of liver illness to propagation of COVID-19. Clin. Sci. 134, 3137–3158 (2020).
Chan, Okay. Okay. et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 369, 1261–1265 (2020).
Glasgow, A. et al. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 28046–28055 (2020).
Chan, Okay. Okay., Tan, T. J. C., Narayanan, Okay. Okay. & Procko, E. An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants. Sci. Adv. 7, eabf1738 (2021).
Higuchi, Y. et al. Engineered ACE2 receptor remedy overcomes mutational escape of SARS-CoV-2. Nat. Commun. 12, 3802 (2021).
Zhang, L. et al. Engineered ACE2 decoy mitigates lung harm and loss of life induced by SARS-CoV-2 variants. Nat. Chem. Biol. 18, 342–351 (2022).
Jackman, J. A. et al. Therapeutic remedy of Zika virus an infection utilizing a brain-penetrating antiviral peptide. Nat. Mater. 17, 971–977 (2018).
Peplow, M. Nanotechnology provides alternative routes to struggle COVID-19 pandemic with antivirals. Nat. Biotechnol. 39, 1172–1174 (2021).
Yoon, B. Okay., Jeon, W.-Y., Sut, T. N., Cho, N.-J. & Jackman, J. A. Stopping membrane-enveloped viruses with nanotechnology methods: towards antiviral drug growth and pandemic preparedness. ACS Nano 15, 125–148 (2021).
Paull, J. R. A. et al. Protecting results of astodrimer sodium 1% nasal spray formulation in opposition to SARS-CoV-2 nasal problem in K18-hACE2 mice. Viruses 13, 1656 (2021).
Nie, C. et al. Spiky nanostructures with geometry-matching topography for virus inhibition. Nano Lett. 20, 5367–5375 (2020).
Kwon, P. S. et al. Designer DNA structure provides exact and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020).
Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021). This examine demonstrates the opportunity of utilizing DNA structure to seize virus.
Saccà, B. & Niemeyer, C. M. DNA origami: the artwork of folding DNA. Angew. Chem. Int. Ed. 51, 58–66 (2012).
Eli Lilly, Regeneron antibody therapies lose out in opposition to Omicron. The Irish Occasions (14 December 2021); https://www.irishtimes.com/enterprise/health-pharma/eli-lilly-regeneron-antibody-therapies-lose-out-against-omicron-1.4755091
Du, S. et al. Buildings of SARS-CoV-2 B.1.351 neutralizing antibodies present insights into cocktail design in opposition to regarding variants. Cell Res. 31, 1130–1133 (2021).
Wang, L. et al. Ultrapotent antibodies in opposition to numerous and extremely transmissible SARS-CoV-2 variants. Science 373, eabh1766 (2021).
Dussupt, V. et al. Low-dose in vivo safety and neutralization throughout SARS-CoV-2 variants by monoclonal antibody mixtures. Nat. Immunol. 22, 1503–1514 (2021).
De Gasparo, R. et al. Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature 593, 424–428 (2021).
Szijj, P. & Chudasama, V. The renaissance of chemically generated bispecific antibodies. Nat. Rev. Chem. 5, 78–92 (2021).
Shatz, W. et al. Ferritin as a pure protein scaffold: constructing a multivalent ferritin–Fab conjugate. LCGC Suppl. 37, 30–35 (2019).
Beigel, J. H. et al. Remdesivir for the remedy of COVID-19—ultimate report. N. Engl. J. Med. 383, 1813–1826 (2020).
The RECOVERY Collaborative Group Dexamethasone in hospitalized sufferers with COVID-19. N. Engl. J. Med. 384, 693–704 (2020).
Mahase, E. COVID-19: Pfizer’s paxlovid is 89% efficient in sufferers liable to severe sickness, firm experiences. Brit. Med. J. 375, n2713 (2021).
Saul, S. & Einav, S. Previous medicine for a brand new virus: repurposed approaches for combating COVID-19. ACS Infect. Dis. 6, 2304–2318 (2020).
Cao, Y. The influence of the hypoxia-VEGF-vascular permeability on COVID-19-infected sufferers. Exploration 1, 20210051 (2021).
Anselmo, A. C. & Mitragotri, S. Nanoparticles within the clinic: an replace submit COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).
Zhao, Z. et al. Glycyrrhizic acid nanoparticles as antiviral and anti inflammatory brokers for COVID-19 remedy. ACS Appl. Mater. Interfaces 13, 20995–21006 (2021).
Liu, J., Wan, M., Lyon, C. J. & Hu, T. Y. Nanomedicine therapies modulating macrophage dysfunction: a possible technique to attenuate cytokine storms in extreme infections. Theranostics 10, 9591–9600 (2020).
Lammers, T. et al. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 15, 622–624 (2020).
Han, X., Mitchell, M. J. & Nie, G. Nanomaterials for therapeutic RNA supply. Matter 3, 1948–1975 (2020).
Bhattacharyya, R. P. & Hanage, W. P. Challenges in inferring intrinsic severity of the SARS-CoV-2 Omicron variant. N. Engl. J. Med. 386, e14 (2022).
Ulloa, A. C., Buchan, S. A., Daneman, N. & Brown, Okay.A. Estimates of SARS-CoV-2 Omicron variant severity in Ontario, Canada. JAMA 327, 1286–1288 (2022).
Nealon, J. & Cowling, B. J. Omicron severity: milder however not gentle. Lancet 399, 412–413 (2022).
Pulliam, J. R. C. et al. Elevated threat of SARS-CoV-2 reinfection related to emergence of Omicron in South Africa. Science 376, eabn4947 (2022).
Moderna broadcasts preliminary booster knowledge and updates technique to deal with Omicron variant. Enterprise Wire https://www.businesswire.com/information/residence/20211220005253/en/Moderna-Broadcasts-Preliminary-Booster-Information-and-Updates-Technique-to-Deal with-Omicron-Variant (2021).
Pfizer and BioNTech present replace on Omicron variant. Pfizer https://www.pfizer.com/information/press-release/press-release-detail/pfizer-and-biontech-provide-update-omicron-variant (2021).
Johnson & Johnson to guage its COVID-19 vaccine in opposition to new Omicron COVID-19 variant. Johnson & Johnson https://www.jnj.com/johnson-johnson-to-evaluate-its-covid-19-vaccine-against-new-omicron-covid-19-variant (2021).
Altmann, D. M., Boyton, R. J. & Beale, R. Immunity to SARS-CoV-2 variants of concern. Science 371, 1103–1104 (2021).
Tregoning, J. S., Flight, Okay. E., Higham, S. L., Wang, Z. & Pierce, B. F. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21, 626–636 (2021).
Wang, P. et al. Elevated resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 29, 747–751.e744 (2021).
Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).
Wilhelm, A. et al. Diminished neutralization of SARS-CoV-2 Omicron variant by vaccine sera and monoclonal antibodies. Preprint at MedRxiv https://www.medrxiv.org/content material/10.1101/2021.12.07.21267432v4 (2021).
Andrews, N. et al. COVID-19 vaccine effectiveness in opposition to the Omicron (B.1.1.529) variant. N. Engl. J. Med. 386, 1532–1546 (2022).
Enhancing Readiness for Omicron (B.1.1.529): Technical Temporary and Precedence Actions for Member States (WHO, 2021); https://www.who.int/docs/default-source/coronaviruse/2022-01-21-global-technical-brief-and-priority-action-on-omicron-sars-cov-2-variant.pdf?sfvrsn=f3ac8bc3_9&obtain=true © Springer Nature.
Mahase, E. COVID-19 booster vaccines: what we all know and who’s doing what. Brit. Med. J. 374, n2082 (2021).
Kitchin, D. et al. Ad26.COV2.S breakthrough infections induce excessive titers of neutralizing antibodies in opposition to Omicron and different SARS-CoV-2 variants of concern. Cell Rep. Med. 3, 100535 (2022).
Wink, P. L. et al. First identification of SARS-CoV-2 Lambda (C.37) variant in Southern Brazil. Infect. Management Hosp. Epidemiol. 1–2 (2021).
Messali, S. et al. A cluster of the brand new SARS-CoV-2 B.1.621 lineage in Italy and sensitivity of the viral isolate to the BNT162b2 vaccine. J. Med. Virol. 93, 6468–6470 (2021).