Scholl, D. S. & Energetic, R. P. Seven chemical separations to vary the world. Nature 532, 435–437 (2016).
Baker, R. W. & Low, B. T. Gasoline separation membrane supplies: a perspective. Macromolecules 47, 6999–7013 (2014).
Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally steady and extremely porous steel–natural framework. Nature 402, 276–279 (1999).
Chui, S. S.-Y. et al. A chemically functionalizable nanoporous materials [Cu3(TMA)2(H2O)3]. Science 283, 1148–1150 (1999).
Côté, A. P. et al. Porous, crystalline, covalent natural frameworks. Science 310, 1166–1170 (2005).
Arnold, M. et al. Oriented crystallization on helps and anisotropic mass transport of the steel–natural framework manganese formate. Eur. J. Inorg. Chem. 60–64 (2007).
Gascon, J., Aguado, S. & Kapteijn, F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 113, 132–138 (2008).
Liu, Y. et al. Synthesis of steady MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater. 118, 296–301 (2009).
Bux, H. et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131, 16000–16001 (2009).
Robeson, L. M. The higher certain revisited. J. Membr. Sci. 320, 390–400 (2008).
Li, Y. S. et al. Molecular sieve membrane: supported steel–natural framework with excessive hydrogen selectivity. Angew. Chem. Int. Ed. 122, 558–561 (2010).
Huang, A., Dou, W. & Caro, J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity by way of covalent functionalization. J. Am. Chem. Soc. 132, 15562–15564 (2010).
Keskin, S. & Sholl, D. S. Screening steel−natural framework supplies for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111, 14055–14059 (2007).
Krishna, R. & van Baten, J. M. In silico screening of steel–natural frameworks in separation functions. Phys. Chem. Chem. Phys. 13, 10593–10616 (2011).
Bae, T. H. et al. A excessive‐efficiency fuel‐separation membrane containing submicrometer‐sized steel–natural framework crystals. Angew. Chem. Int. Ed. 122, 10059–10062 (2010).
Keskin, S. & Sholl, D. S. Deciding on steel–natural frameworks as enabling supplies in mixed-matrix membranes for high-efficiency pure fuel purification. Power Environ. Sci. 3, 343–351 (2010).
Ranjan, R. & Tsapatsis, M. Microporous steel–natural framework membrane on porous assist utilizing the seeded development methodology. Chem. Mater. 21, 4920–4924 (2009).
Brown, A. J. et al. Interfacial microfluidic processing of steel–natural framework hole fiber membranes. Science 345, 72–75 (2014).
Kwon, H. Y. & Jeong, H.-Ok. In situ synthesis of skinny zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally excessive propylene/propane separation. J. Am. Chem. Soc. 135, 10763–10768 (2013).
Hu, Y. et al. Metallic–natural framework membranes fabricated by way of reactive seeding. Chem. Commun. 47, 737–739 (2011).
Liu, Y. et al. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. J. Am. Chem. Soc. 136, 14353–14356 (2014).
Pan, Y., Tao, L., Lestari, G. & Lai, Z. Efficient separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390–391, 93–98 (2012).
Zhou, S. et al. Electrochemical synthesis of steady steel–natural framework membranes for separation of hydrocarbons. Nat. Power 6, 882–891 (2021).
Knebel, A. et al. Resolution processable steel–natural frameworks for mixed-matrix membranes utilizing porous liquids. Nat. Mater. 19, 1346–1353 (2020).
Ma, X. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018).
Al-Maythalony, B. A. et al. Quest for anionic MOF membranes: steady sod-ZMOF membrane with CO2 adsorption-driven selectivity. J. Am. Chem. Soc. 137, 1754–1757 (2015).
Seoane, B. et al. Metallic–natural framework primarily based mixed-matrix membranes: an answer for extremely environment friendly CO2 seize? Chem. Soc. Rev. 44, 2421–2454 (2015).
Cussler, E. L. Membranes containing selective flakes. J. Membr. Sci. 52, 275–288 (1990).
Peng, Y. et al. Metallic–natural framework nanosheets as constructing blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).
Rodenas, T. et al. Metallic–natural framework nanosheets in polymer composite supplies for fuel separation. Nat. Mater. 14, 48–55 (2015).
Ding, S.-Y. et al. Development of covalent natural framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling response. J. Am. Chem. Soc. 133, 19816–19822 (2011).
Fan, H. W. et al. Covalent natural framework–covalent natural framework bilayer membranes for extremely selective fuel separation. J. Am. Chem. Soc. 140, 10094–10098 (2018).
Knebel, A. et al. Defibrillation of sentimental porous steel–natural frameworks with electrical fields. Science 358, 347–351 (2017).
Wang, Z. et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872 (2016).
He, G. et al. Electrophoretic nuclei meeting for crystallization of high-performance membranes on unmodified helps. Adv. Funct. Mater. 28, 1707427 (2018).
Zhou, S. et al. Paralyzed membrane: current-driven synthesis of a steel–natural framework with sharpened propene/propane separation. Sci. Adv. 4, eaau1393 (2018).
Hou, Q. et al. Extremely-tuning of the aperture dimension in stiffened ZIF-8_Cm frameworks with mixed-linker technique for enhanced CO2/CH4 separation. Angew. Chem. Int. Ed. 58, 327–331 (2019).
Wang, Y. et al. A MOF glass membrane for fuel separation. Angew. Chem. Int. Ed. 59, 4365–4369 (2020).
Miao, Y. et al. Electron beam induced modification of ZIF-8 membrane permeation properties. Chem. Commun. 57, 5250–5253 (2021).
Zhao, M. et al. A extremely selective supramolecule array membrane product of zero dimensional molecules for fuel separation. Angew. Chem. Int. Ed. 60, 20977–20983 (2021).
Lee, M. J., Kwon, H. T. & Jeong, H.-Ok. Defect-dependent stability of extremely propylene-selective zeolitic-imidazolate framework ZIF-8 membranes. J. Membr. Sci. 259, 105–113 (2017).
Kwon, H. T. et al. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 137, 12304–12311 (2015).
Zhang, X. et al. Electrochemically assisted interfacial development of MOF membranes. Matter 1, 1285–1292 (2019).
Shu, L. et al. Versatile soft-solid steel–natural framework composite membranes for H2/CO2 separation. Angew. Chem. Int. Ed. 61, e202117577 (2022).
Van Assche, T. R. C. et al. Electrochemical synthesis of skinny HKUST-1 layers on copper mesh. Microporous Mesoporous Mater. 158, 209–213 (2012).
Müller, Ok. et al. Defects as coloration facilities: the obvious coloration of steel–natural frameworks containing Cu2+-based paddle-wheel items. ACS Appl. Mater. Interfaces 9, 37463–37467 (2017).
Nan, J., Dong, X., Wang, W. & Jin, W. Formation mechanism of steel–natural framework membranes derived from reactive seeding method. Microporous Mesoporous Mater. 155, 90–98 (2012).
Knebel, A. et al. Comparative research of MIL-96(Al) as steady steel–natural frameworks layer and mixed-matrix membrane. ACS Appl. Mater. Interfaces 8, 7536–7544 (2016).
Knebel, A. et al. Hierarchical nanostructures of steel–natural frameworks utilized in fuel separating ZIF-8-on-ZIF-67 membranes. Chem. Eur. J. 24, 5728–5733 (2018).
Hurrle, S. et al. Sprayable, large-area steel–natural framework movies and membranes of various thickness. Chem. Eur. J. 23, 2233–2475 (2017).
Zhang, X. et al. Electrochemical deposition of steel–natural framework movies and their functions. J. Mater. Chem. A 8, 7569–7587 (2020).
Eum, Ok. et al. ZIF-8 membranes by way of interfacial microfluidic processing in polymeric hole fibers: environment friendly propylene separation at elevated pressures. ACS Appl. Mater. Interfaces 8, 25337–25342 (2016).
Eum, Ok. et al. ZIF-8 membrane separation efficiency tuning by vapor section ligand therapy. Angew. Chem. Int. Ed. 58, 16390–16394 (2019).
Bisbey, R. P., DeBlase, C. R., Smith, B. J. & Dichtel, W. R. Two-dimensional covalent natural framework skinny movies grown in stream. J. Am. Chem. Soc. 138, 11433–11436 (2016).
He, G., Zhang, R. & Jiang, Z. Engineering covalent natural framework membranes. Acc. Mater. Res. 2, 630–643 (2021).
Geng, Ok. et al. Covalent natural frameworks: design, synthesis and features. Chem. Rev. 120, 8814–8933 (2020).
Haase, F. & Lotsch, B. V. Fixing the trilemma: in the direction of crystalline, steady and purposeful covalent natural frameworks. Chem. Soc. Rev. 49, 8469–8500 (2020).
Ma, X. & Scott, T. F. Approaches and challenges within the synthesis of three-dimensional covalent-organic frameworks. Commun. Chem. 1, 98 (2018).
Lu, H. et al. A novel 3D covalent natural framework membrane grown on a porous α-Al2O3 substrate underneath solvothermal circumstances. Chem. Commun. 51, 15562–15565 (2015).
Segura, J. L., Mancheno, M. J. & Zamora, F. Covalent natural frameworks primarily based on Schiff-base chemistry: synthesis, properties and potential functions. Chem. Soc. Rev. 45, 5635–5671 (2016).
Ma, T. et al. Single-crystal X-ray diffraction constructions of covalent natural frameworks. Science 361, 48–52 (2018).
Li, X. et al. Facile transformation of imine covalent natural frameworks into ultrastable crystalline porous fragrant frameworks. Nat. Commun. 9, 2998 (2018).
Shan, M. et al. Azine-linked covalent natural framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chem. Eur. J. 22, 14467–14470 (2016).
Liu, J. et al. Self-standing and versatile covalent natural framework (COF) membranes for molecular separation. Sci. Adv. 6, eabb1110 (2020).
Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29, 1603945 (2017).
Castano, I. et al. Chemical management over nucleation and anisotropic development of two-dimensional covalent natural frameworks. ACS Cent. Sci. 5, 1892–1899 (2019).
Auras, F. et al. Synchronized offset stacking: an idea for rising large-domain and extremely crystalline 2D covalent natural frameworks. J. Am. Chem. Soc. 138, 16703–16710 (2016).
Li, Y. Laminated self-standing covalent natural framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat. Commun. 11, 599 (2020).
Tong, M. et al. Few-layered ultrathin covalent natural framework membranes for fuel separation: a computational research. J. Mater. Chem. A 4, 124–131 (2016).
Ying, Y. et al. Ultrathin two-dimensional membranes assembled by ionic covalent natural nanosheets with decreased apertures for fuel separation. J. Am. Chem. Soc. 142, 4472–4480 (2020).
Wang, P. et al. Single-phase covalent natural framework staggered stacking nanosheet membrane for CO2-selective separation. Angew. Chem. Int. Ed. 60, 19047–19052 (2021).
Fan, H. et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021).
Fan, H. et al. Excessive-flux vertically aligned 2D covalent natural framework membrane with enhanced hydrogen separation. J. Am. Chem. Soc. 142, 6872–6877 (2020).
Fenton, J. L. et al. Polycrystalline covalent natural framework movies act as adsorbents, not membranes. J. Am. Chem. Soc. 143, 1466–1473 (2021).
Fan, H. et al. Excessive-flux membranes primarily based on the covalent natural framework COF-LZU1 for selective dye separation by nanofiltration. Angew. Chem. Int. Ed. 57, 4083–4087 (2018).
Bon, V. et al. Huge strain amplification by stimulated contraction of mesoporous frameworks. Angew. Chem. Int. Ed. 133, 11841–11845 (2021).
Krause, S. et al. A pressure-amplifying framework materials with unfavorable fuel adsorption transitions. Nature 532, 348–352 (2016).
Moggach, S. A., Bennett, T. D. & Cheetham, A. Ok. The impact of strain on ZIF-8: growing pore dimension with strain and the formation of a high-pressure section at 1.47 GPa. Angew. Chem. Int. Ed. 48, 7087–7089 (2009).
Ryder, M. R. et al. Figuring out the position of terahertz vibrations in steel–natural frameworks: from gate-opening phenomenon to shear-driven structural destabilization. Phys. Rev. Lett. 113, 215502 (2014).
Peralta, D. et al. The separation of xylene isomers by ZIF-8: an indication of the extraordinary flexibility of the ZIF-8 framework. Microporous Mesoporous Mater. 173, 1–5 (2013).
Iacomi, P. & Maurin, G. ResponZIF constructions: zeolitic imidazolate frameworks as stimuli-responsive supplies. ACS Appl. Mater. Interfaces 13, 50602–50642 (2021).
Ghoufi, A., Benhamed, Ok., Boukli-Hacene, L. & Maurin, G. Electrically induced respiration of the MIL- 53(Cr) steel–natural framework. ACS Cent. Sci. 3, 394–398 (2017).
Lyu, L. et al. C3H6/C3H8 adsorption habits research of stiffened ZIF-8 ready underneath an electrical area. Chem. Ing. Tech. 94, 119–127 (2022).
Bennett, T. D. et al. Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem. Commun. 47, 7983–7985 (2011).
Zhou, C. et al. Metallic–natural framework glasses with everlasting accessible porosity. Nat. Commun. 9, 5042 (2018).
Nozari, V. et al. Ionic liquid facilitated melting of the steel–natural framework ZIF-8. Nat. Commun. 12, 5703 (2021).
Frentzel-Beyme, L. et al. Porous purple glass—a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework. J. Mater. Chem. A 7, 985–990 (2019).
Knebel, A. et al. Azobenzene visitor molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane. Chem. Mater. 29, 3111–3117 (2017).
Brandon, J., Furlong, B. J. & Katz, M. J. Bistable dithienylethene-based steel–natural framework illustrating optically induced modifications in chemical separations. J. Am. Chem. Soc. 139, 13280–13283 (2017).
Fan, S. et al. Photogated proton conductivity of ZIF-8 membranes co-modified with graphene quantum dots and polystyrene sulfonate. Sci. China Mater. 64, 1997–2007 (2021).
Prasetya, N., Teck, A. A. & Ladewig, B. P. Matrimid-JUC-62 and Matrimid-PCN-250 mixed-matrix membranes displaying light-responsive fuel separation and helpful ageing traits for CO2/N2 separation. Sci. Rep. 8, 2944 (2018).
Koros, W. & Zhang, C. Supplies for next-generation molecularly selective artificial membranes. Nat. Mater. 16, 289–297 (2017).
Seoane, B. et al. Metallic–natural framework primarily based mixed-matrix membranes: an answer for extremely environment friendly CO2 seize? Chem. Soc. Rev. 44, 2421–2454 (2015).
Etxeberria-Benavides, M. et al. Excessive efficiency mixed-matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J. Membr. Sci. 550, 198–207 (2018).
Schneider, D., Kapteijn, F. & Valiullin, R. Transport properties of mixed-matrix membranes: a kinetic Monte Carlo research. Phys. Rev. Appl. 12, 044034 (2019).
Diestel, L. et al. Matrimid-based mixed-matrix membranes: interpretation and correlation of experimental findings for zeolitic imidazolate frameworks as fillers in H2/CO2 separation. Ind. Eng. Chem. Res. 54, 1103–1112 (2015).
Friebe, S. et al. NH2-MIL-125 as membrane for carbon dioxide sequestration: skinny supported MOF layers contra mixed-matrix-membranes. J. Membr. Sci. 516, 185–193 (2016).
Hossain, I. et al. Cross-linked mixed-matrix membranes utilizing functionalized UiO-66-NH2 into PEG/PPG–PDMS-based rubbery polymer for environment friendly CO2 separation. ACS Appl. Mater. Interfaces 12, 57916–57931 (2020).
Wang, Z. et al. Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving. J. Membr. Sci. 633, 119397 (2021).
Kumar, P. et al. One-dimensional intergrowth in two-dimensional zeolite nanosheets and their impact on ultra-selective transport. Nat. Mater. 19, 443–449 (2020).
Dakhchoune, M. et al. Gasoline-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. 20, 362–369 (2021).
Wu, S. et al. Excessive-throughput droplet microfluidic synthesis of hierarchical steel–natural framework nanosheet microcapsules. Nano Res. 12, 2736–2742 (2019).
Sabetghadam, A. et al. Skinny mixed-matrix and dual-layer membranes containing steel–natural framework nanosheets and PolyactiveTM for CO2 seize. J. Membr. Sci. 570–571, 226–235 (2019).
Caro, J. & Kärger, J. From laptop design to fuel separation. Nat. Mater. 19, 374–375 (2020).
Sabetghadam, A. et al. Metallic–natural framework crystals in mixed-matrix membranes: impression of the filler morphology on the fuel separation efficiency. Adv. Funct. Mat. 26, 3154–3163 (2016).
Pustovarenko, A. et al. Nanosheets of nonlayered aluminum steel–natural frameworks by way of a surfactant-assisted methodology. Adv. Mater. 30, 1707234 (2018).
Zou, C. et al. Mechanical synthesis of COF nanosheet cluster and its mixed-matrix membrane for environment friendly CO2 removing. ACS Appl. Mater. Interfaces 9, 29093–29100 (2017).
Chen, Y. et al. Combined-matrix membranes containing MOF@COF hybrid fillers for environment friendly CO2/CH4 separation. J. Membr. Sci. 573, 97–106 (2019).
Ryder, M. R. et al. Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based steel–natural framework. Phys. Rev. Lett. 118, 255502 (2017).
Jayachandrababu, Ok. C. et al. Construction elucidation of mixed-linker zeolitic imidazolate frameworks by solid-state 1H CRAMPS NMR spectroscopy and computational modeling. J. Am. Chem. Soc. 138, 7325–7336 (2016).
Hao, J. et al. Mechanistic research on thermally induced lattice stiffening of ZIF-8. Chem. Mater. 33, 4035–4044 (2021).
Evans, J. D. et al. Feasibility of mixed-matrix membrane fuel separations using porous natural cages. J. Phys. Chem. C 118, 1523–1529 (2014).
Tozawa, T. et al. Porous natural cages. Nat. Mater. 8, 973–978 (2009).
Liu, X. et al. Molecular-scale hybrid membranes derived from steel–natural polyhedra for fuel separation. ACS Appl. Mater. Interfaces 10, 21381–21389 (2018).
Krishna, R. Diffusion in porous crystalline supplies. Chem. Soc. Rev. 41, 3099–3118 (2012).
Keskin, S. & Scholl, D. S. Screening steel−natural framework supplies for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111, 14055–14059 (2007).
Altintas, C. et al. Pc simulations of 4240 MOF membranes for H2/CH4 separations: insights into construction–efficiency relations. J. Mater. Chem. A 6, 5836–5847 (2018).
Altundal, O. F., Altintas, C. & Keskin, S. Can COFs substitute MOFs in flue fuel separation? Excessive-throughput computational screening of COFs for CO2/N2 separation. J. Mater. Chem. A 8, 14609–14623 (2020).
Shen, J., Liu, G., Han, Y. & Jin, W. Synthetic channels for confined mass transport on the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).
Babu, D. J. et al. Proscribing lattice flexibility in polycrystalline steel–natural framework membranes for carbon seize. Adv. Mat. 31, 1900855 (2019).