Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of worldwide well being concern. Lancet. 2020;395(10223):470–3.
Dong E, Du H, Gardner L. An interactive web-based dashboard to trace COVID-19 in actual time. Lancet Infect Dis. 2020;20(5):533–4.
Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021;21(10):626–36.
Garcia-Beltran WF, Lam EC, St Denis Ok, Nitido AD, Garcia ZH, Hauser BM, Feldman J, Pavlovic MN, Gregory DJ, Poznansky MC, et al. A number of SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021;184(9):2372-2383.e2379.
Grubaugh ND, Hodcroft EB, Fauver JR, Phelan AL, Cevik M. Public well being actions to manage new SARS-CoV-2 variants. Cell. 2021;184(5):1127–32.
Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H, Zhang Y, Li T, Liu S, Zhang M, et al. SARS-CoV-2 501Y.V2 variants lack increased infectivity however do have immune escape. Cell. 2021;184(9):2362-2371.e2369.
Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, Stanifer ML, Boulant S, Bartenschlager R, Chlanda P. SARS-CoV-2 construction and replication characterised by in situ cryo-electron tomography. Nat Commun. 2020;11(1):5885.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Track H, Huang B, Zhu N, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.
Hu B, Guo H, Zhou P, Shi ZL. Traits of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry is dependent upon ACE2 and TMPRSS2 and is blocked by a clinically confirmed protease inhibitor. Cell. 2020;181(2):271-280.e278.
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga Ok, Greenough TC, et al. Angiotensin-converting enzyme 2 is a useful receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4.
Shang J, Ye G, Shi Ok, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural foundation of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–4.
Oberfeld B, Achanta A, Carpenter Ok, Chen P, Gilette NM, Langat P, Stated JT, Schiff AE, Zhou AS, Barczak AK, et al. SnapShot: COVID-19. Cell. 2020;181(4):954-954.e951.
Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, Yates JR, Villa E, Cleveland DW, Corbett KD. The SARS-CoV-2 nucleocapsid phosphoprotein varieties mutually unique condensates with RNA and the memb rane-associated M protein. Nat Commun. 2021;12(1):502.
Perdikari TM, Murthy AC, Ryan VH, Watters S, Naik MT, Fawzi NL. SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. Embo j. 2020;39(24): e106478.
Savastano A, et al. Nucleocapsid protein of SARS-CoV-2 part separates into RNA-rich polymerase-containing condensates. Nat Commun. 2020;11(1):6041.
Mattei S, Glass B, Hagen WJ, Kräusslich HG, Briggs JA. The construction and adaptability of conical HIV-1 capsids decided inside intact virions. Science. 2016;354(6318):1434–7.
Qu Ok, Glass B, Doležal M, Schur FKM, Murciano B, Rein A, Rumlová M, Ruml T, Kräusslich HG, Briggs JAG. Construction and structure of immature and mature murine leukemia virus capsids. Proc Natl Acad Sci U S A. 2018;115(50):E11751-e11760.
Holmstrom ED, Nettels D, Schuler B. Conformational plasticity of hepatitis C virus core protein permits RNA-induced formation of nucleocapsid-like particles. J Mol Biol. 2018;430(16):2453–67.
Blondot ML, Bruss V, Kann M. Intracellular transport and egress of hepatitis B virus. J Hepatol. 2016;64(1 Suppl):S49-s59.
Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, et al. A familial cluster of pneumonia related to the 2019 novel coronavirus indicating person-to-person transmission: a examine of a household cluster. Lancet. 2020;395(10223):514–23.
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and scientific traits of 99 circumstances of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive examine. Lancet. 2020;395(10223):507–13.
Liu P, Yang M, Zhao X, Guo Y, Wang L, Zhang J, Lei W, Han W, Jiang F, Liu WJ, et al. Chilly-chain transportation within the frozen meals trade might have brought about a recurrence of COVID-19 circumstances in vacation spot: Profitable isolation of SARS-CoV-2 virus from the imported frozen cod package deal floor. Biosaf Well being. 2020;2(4):199–201.
Ma H, Zhang J, Wang J, Qin Y, Chen C, Track Y, Wang L, Meng J, Mao L, Li F, et al. COVID-19 outbreak attributable to contaminated packaging of imported cold-chain merchandise—Liaoning Province, China, July 2020. China CDC Wkly. 2021;3(21):441–7.
Xie C, Zhao H, Li Ok, Zhang Z, Lu X, Peng H, Wang D, Chen J, Zhang X, Wu D, et al. The proof of oblique transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Well being. 2020;20(1):1202.
Chia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, Lim XF, Lim AS, Sutjipto S, Lee PH, et al. Detection of air and floor contamination by SARS-CoV-2 in hospital rooms of contaminated sufferers. Nat Commun. 2020;11(1):2800.
Harvey AP, Fuhrmeister ER, Cantrell ME, Pitol AK, Swarthout JM, Powers JE, Nadimpalli ML, Julian TR, Pickering AJ. Longitudinal monitoring of SARS-CoV-2 RNA on high-touch surfaces in a neighborhood setting. Environ Sci Technol Lett. 2021;8(2):168–75.
Liu H, Fei C, Chen Y, Luo S, Yang T, Yang L, Liu J, Ji X, Wu W, Track J. Investigating SARS-CoV-2 persistent contamination in several indoor environments. Environ Res. 2021;202: 111763.
Somsen GA, van Rijn C, Kooij S, Bem RA, Bonn D. Small droplet aerosols in poorly ventilated areas and SARS-CoV-2 transmission. Lancet Respir Med. 2020;8(7):658–9.
Santarpia JL, Rivera DN, Herrera VL, Morwitzer MJ, Creager HM, Santarpia GW, Crown KK, Brett-Main DM, Schnaubelt ER, Broadhurst MJ, et al. Writer correction: aerosol and floor contamination of SARS-CoV-2 noticed in quarantine and isolation care. Sci Rep. 2020;10(1):13892.
Zhou J, Otter JA, Value JR, Cimpeanu C, Meno Garcia D, Kinross J, Boshier PR, Mason S, Bolt F, Holmes AH, et al. Investigating extreme acute respiratory syndrome coronavirus 2 (SARS-CoV-2) floor and air contamination in an acute healthcare setting in the course of the peak of the coronavirus illness 2019 (COVID-19) pandemic in London. Clin Infect Dis. 2021;73(7):e1870–7.
Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Cui J, Xu W, Yang Y, Fayad ZA, et al. CT imaging options of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295(1):202–7.
Zhang C, Zhou L, Liu H, Zhang S, Tian Y, Huo J, Li F, Zhang Y, Wei B, Xu D, et al. Establishing a excessive sensitivity detection methodology for SARS-CoV-2 IgM/IgG and growing a scientific software of this methodology. Emerg Microbes Infect. 2020;9(1):2020–9.
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045.
Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, Barretto RPJ, Ranu A, Macrae RK, Faure G, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N Engl J Med. 2020;383(15):1492–4.
Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–4.
Search engine optimization G, Lee G, Kim MJ, Baek SH, Choi M, Ku KB, Lee CS, Jun S, Park D, Kim HG, et al. Fast detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens utilizing field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–42.
Alafeef M, Dighe Ok, Moitra P, Pan D: Fast, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Utilizing Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano 2020.
Nguyen NHL, Kim S, Lindemann G, Berry V. COVID-19 spike protein induced phononic modification in antibody-coupled graphene for viral detection software. ACS Nano. 2021. https://doi.org/10.1021/acsnano.1c02549.
Xia Y, Chen Y, Tang Y, Cheng G, Yu X, He H, Cao G, Lu H, Liu Z, Zheng SY. Smartphone-Primarily based Level-of-Care Microfluidic Platform Fabricated with a ZnO Nanorod Template for Colorimetric Virus Detection. ACS Sens. 2019;4(12):3298–307.
Chen KL, Yang ZY, Lin CW. A magneto-optical biochip for speedy assay based mostly on the Cotton-Mouton impact of γ-Fe(2)O(3)@Au core/shell nanoparticles. J Nanobiotechnology. 2021;19(1):301.
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, prognosis, and remedy of coronavirus illness 2019 (COVID-19): a evaluation. JAMA. 2020;324(8):782–93.
Blumberg BS. Australia antigen and the biology of hepatitis B. Science. 1977;197(4298):17–25.
Luckenbaugh L, Kitrinos KM, Delaney WET, Hu J. Genome-free hepatitis B virion ranges in affected person sera as a possible marker to observe response to antiviral remedy. J Viral Hepat. 2015;22(6):561–70.
Ning X, Nguyen D, Mentzer L, Adams C, Lee H, Ashley R, Hafenstein S, Hu J. Secretion of genome-free hepatitis B virus–single strand blocking mannequin for virion morphogenesis of para-retrovirus. PLoS Pathog. 2011;7(9): e1002255.
Wang J, Shen T, Huang X, Kumar GR, Chen X, Zeng Z, Zhang R, Chen R, Li T, Zhang T, et al. Serum hepatitis B virus RNA is encapsidated pregenome RNA which may be related to persistence of viral an infection and rebound. J Hepatol. 2016;65(4):700–10.
Yu J, Li Z, He X, Gebre MS, Bondzie EA, Wan H, Jacob-Dolan C, Martinez DR, Nkolola JP, Baric RS, et al. Deletion of the SARS-CoV-2 spike cytoplasmic tail will increase infectivity in pseudovirus neutralization assays. J Virol. 2021. https://doi.org/10.1128/JVI.00044-21.
Chen M, Zhang XE. Building and functions of SARS-CoV-2 pseudoviruses: a mini evaluation. Int J Biol Sci. 2021;17(6):1574–80.
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, et al. Writer Correction: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2021;12(1):2144.
Tseng SH, Lam B, Kung YJ, Lin J, Liu L, Tsai YC, Ferrall L, Roden RBS, Wu TC, Hung CF. A novel pseudovirus-based mouse mannequin of SARS-CoV-2 an infection to check COVID-19 interventions. J Biomed Sci. 2021;28(1):34.
Yan R, Cai D, Liu Y, Guo H. Detection of hepatitis b virus particles launched from cultured cells by particle gel assay. Strategies Mol Biol. 2017;1540:193–202.
Bhargav A, Muller DA, Kendall MA, Corrie SR. Floor modifications of microprojection arrays for improved biomarker seize within the pores and skin of reside mice. ACS Appl Mater Interfaces. 2012;4(5):2483–9.
Yeh YT, Gulino Ok, Zhang Y, Sabestien A, Chou TW, Zhou B, Lin Z, Albert I, Lu H, Swaminathan V, et al. A speedy and label-free platform for virus seize and identification from scientific samples. Proc Natl Acad Sci U S A. 2020;117(2):895–901.
Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen HL, Chan MCW, Peiris M, Poon LLM. Stability of SARS-CoV-2 in several environmental situations. Lancet Microbe. 2020;1(1): e10.
van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, et al. Aerosol and floor stability of HCoV-19 (SARS-CoV-2) in comparison with SARS-CoV-1. MedRxiv. 2020. https://doi.org/10.1056/NEJMc2004973.
van Doremalen N, Bushmaker T, Munster VJ. Stability of Center East respiratory syndrome coronavirus (MERS-CoV) below totally different environmental situations. Euro Surveill. 2013. https://doi.org/10.2807/1560-7917.ES2013.18.38.20590.
Chan SK, Du P, Ignacio C, Mehta S, Newton IG, Steinmetz NF. Biomimetic virus-like particles as extreme acute respiratory syndrome coronavirus 2 diagnostic instruments. ACS Nano. 2021;15(1):1259–72.
Ma Y, Mao G, Wu G, Chen M, Qin F, Zheng L, Zhang XE. Twin-fluorescence labeling pseudovirus for real-time imaging of single SARS-CoV-2 entry in respiratory epithelial cells. ACS Appl Mater Interfaces. 2021;13(21):24477–86.