Nanotechnology

Enhanced mucosal immune responses and diminished viral load within the respiratory tract of ferrets to intranasal lipid nanoparticle-based SARS-CoV-2 proteins and mRNA vaccines | Journal of Nanobiotechnology

Enhanced mucosal immune responses and diminished viral load within the respiratory tract of ferrets to intranasal lipid nanoparticle-based SARS-CoV-2 proteins and mRNA vaccines | Journal of Nanobiotechnology
Written by admin


  • Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: classes discovered from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:1–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick L, Rattigan SM, et al. A scientific evaluation of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of safety, and affiliation of antibody responses with severity of illness, Infectious Ailments (besides HIV/AIDS). 2020.

  • Melgaco JG, Azamor T, Ano Bom APD. Protecting immunity after COVID-19 has been questioned: what can we do with out SARS-CoV-2-IgG detection? Cell Immunol. 2020;353: 104114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered affected person cohort and their implications, Infectious Ailments (besides HIV/AIDS). 2020.

  • Thevarajan I, Nguyen TH, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses underpinning viral clearance and affected person restoration in a non-severe case of COVID-19, Infectious Ailments (besides HIV/AIDS). 2020.

  • Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA, Endeman H, et al. Phenotype of SARS-CoV-2-specific T-cells in COVID-19 sufferers with acute respiratory misery syndrome, Infectious Ailments (besides HIV/AIDS). 2020.

  • Bauer T, Jilg W. Hepatitis B floor antigen-specific T and B cell reminiscence in people who had misplaced protecting antibodies after hepatitis B vaccination. Vaccine. 2006;24:572–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the problem. Nat Rev Immunol. 2006;6:148–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno-Fierros L, Garcia-Silva I, Rosales-Mendoza S. Improvement of SARS-CoV-2 vaccines: ought to we give attention to mucosal immunity? Skilled Opin Biol Ther. 2020;20:831.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bacon A, Makin J, Sizer PJ, Jabbal-Gill I, Hinchcliffe M, Illum L, et al. Carbohydrate biopolymers improve antibody responses to mucosally delivered vaccine antigens. Infect Immun. 2000;68:5764–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertram U, Bernard MC, Haensler J, Maincent P, Bodmeier R. In situ gelling nasal inserts for influenza vaccine supply. Drug Dev Ind Pharm. 2010;36:581–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhakal S, Cheng X, Salcido J, Renu S, Bondra Ok, Lakshmanappa YS, et al. Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protecting immune response in pigs. Int J Nanomedicine. 2018;13:6699–715.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and supply. Annu Rev Biomed Eng. 2012;14:17–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heit A, Schmitz F, Haas T, Busch DH, Wagner H. Antigen co-encapsulated with adjuvants effectively drive protecting T cell immunity. Eur J Immunol. 2007;37:2063–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schliehe C, Redaelli C, Engelhardt S, Fehlings M, Mueller M, van Rooijen N, et al. CD8- dendritic cells and macrophages cross-present poly(D, L-lactate-co-glycolate) acid microsphere-encapsulated antigen in vivo. J Immunol. 2011;187:2112–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foged C, Brodin B, Frokjaer S, Sundblad A. Particle dimension and floor cost have an effect on particle uptake by human dendritic cells in an in vitro mannequin. Int J Pharm. 2005;298:315–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhakal S, Hiremath J, Bondra Ok, Lakshmanappa YS, Shyu DL, Ouyang Ok, et al. Biodegradable nanoparticle supply of inactivated swine influenza virus vaccine gives heterologous cell-mediated immune response in pigs. J Management Launch. 2017;247:194–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiremath J, Kang KI, Xia M, Elaish M, Binjawadagi B, Ouyang Ok, et al. Entrapment of H1N1 influenza virus derived conserved peptides in PLGA nanoparticles enhances T cell response and vaccine efficacy in pigs. PLoS ONE. 2016;11: e0151922.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an outline of biomedical functions. J Management Launch. 2012;161:505–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang F, Peng B, Chang H, Zhang R, Lu F, Wang F, et al. Intranasal immunization of mice to keep away from interference of maternal antibody in opposition to H5N1 an infection. PLoS ONE. 2016;11: e0157041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renu S, Feliciano-Ruiz N, Patil V, Schrock J, Han Y, Ramesh A, et al. Immunity and protecting efficacy of mannose conjugated chitosan-based influenza nanovaccine in maternal antibody optimistic pigs. Entrance Immunol. 2021;12: 584299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JR, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499:102–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du Y, Xu Y, Feng J, Hu L, Zhang Y, Zhang B, et al. Intranasal administration of a recombinant RBD vaccine induced protecting immunity in opposition to SARS-CoV-2 in mouse. Vaccine. 2021;39:2280–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang WC, Chiem Ok, Martinez-Sobrido L, Lovell JF. Intranasal immunization with liposome-displayed receptor-binding area induces mucosal immunity and safety in opposition to SARS-CoV-2. Pathogens. 2022;11:1035.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovell JF, Baik YO, Choi SK, Lee C, Lee JY, Miura Ok, et al. Interim evaluation from a part 2 randomized trial of EuCorVac-19: a recombinant protein SARS-CoV-2 RBD nanoliposome vaccine. BMC Med. 2022;20:462.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhakal S, Renu S, Ghimire S, Shaan Lakshmanappa Y, Hogshead BT, Feliciano-Ruiz N, et al. Mucosal immunity and protecting efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle supply in pigs. Entrance Immunol. 2018;9:934.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malyala P, Chesko J, Ugozzoli M, Goodsell A, Zhou F, Vajdy M, et al. The efficiency of the adjuvant, CpG oligos, is enhanced by encapsulation in PLG microparticles. J Pharm Sci. 2008;97:1155–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolhassani A, Safaiyan S, Rafati S. Enchancment of various vaccine supply techniques for most cancers remedy. Mol Most cancers. 2011;10:3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Inactivated and subunit vaccines in opposition to porcine reproductive and respiratory syndrome: present standing and future route. Vaccine. 2015;33:3065–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moon JJ, Suh H, Li AV, Ockenhouse CF, Yadava A, Irvine DJ. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that broaden Tfh cells and promote germinal middle induction. Proc Natl Acad Sci U S A. 2012;109:1080–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binjawadagi B, Dwivedi V, Manickam C, Ouyang Ok, Torrelles JB, Renukaradhya GJ. An revolutionary strategy to induce cross-protective immunity in opposition to porcine reproductive and respiratory syndrome virus within the lungs of pigs by adjuvanted nanotechnology-based vaccination. Int J Nanomed. 2014;9:1519–35.


    Google Scholar
     

  • Binjawadagi B, Dwivedi V, Manickam C, Ouyang Ok, Wu Y, Lee LJ, et al. Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs. Int J Nanomed. 2014;9:679–94.


    Google Scholar
     

  • Pulendran B, Ahmed R. Translating innate immunity into immunological reminiscence: implications for vaccine growth. Cell. 2006;124:849–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawai T, Akira S. The function of pattern-recognition receptors in innate immunity: replace on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salman HH, Irache JM, Gamazo C. Immunoadjuvant capability of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine. 2009;27:4784–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braga TT, Forni MF, Correa-Costa M, Ramos RN, Barbuto JA, Branco P, et al. Soluble uric acid prompts the NLRP3 inflammasome. Sci Rep. 2017;7:39884.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng G, Chau EM, Shi Y. Current developments in immune activation by uric acid crystals. Arch Immunol Ther Exp. 2010;58:273–7.

    Article 
    CAS 

    Google Scholar
     

  • Sakamaki I, Inai Ok, Tsutani H. Security of intradermal injection of monosodium urate crystals as a vaccine provider in volunteers. Nucleosides Nucleotides Nucleic Acids. 2011;30:1077–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng XG, Zhong GM, Mcdonough J, MacNaughton M. In vivo analysis of MSU crystals as an adjuvant. Vaccine Improvement Heart of San Antonio Convention, Nov 13–14, 20142014.

  • Kim YI, Kim SG, Kim SM, Kim EH, Park SJ, Yu KM, et al. An infection and fast transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020;27:704–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Topol EJ, Iwasaki A. Operation nasal vaccine-lightning pace to counter COVID-19. Sci Immunol. 2022;7: eadd9947.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheikh-Mohamed S, Isho B, Chao GYC, Zuo M, Cohen C, Lustig Y, et al. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are related to safety in opposition to subsequent an infection. Mucosal Immunol. 2022;15:799–808.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mistry P, Barmania F, Mellet J, Peta Ok, Strydom A, Viljoen IM, et al. SARS-CoV-2 variants, vaccines, and host immunity. Entrance Immunol. 2021;12: 809244.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park JW, Lagniton PNP, Liu Y, Xu RH. mRNA vaccines for COVID-19: what, why and the way. Int J Biol Sci. 2021;17:1446–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naaber P, Tserel L, Kangro Ok, Sepp E, Jurjenson V, Adamson A, et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal potential examine. Lancet Reg Well being Eur. 2021;10: 100208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592:616–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manocha M, Pal PC, Chitralekha KT, Thomas BE, Tripathi V, Gupta SD, et al. Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles together with Ulex Europaeus-I lectin as M cell goal. Vaccine. 2005;23:5599–617.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisa Schnirring CN, Feb 21, 2018. CDC vaccine panel brings again FluMist for 2018–19 season. http://www.cidrapumnedu/news-perspective/2018/02/cdc-vaccine-panel-brings-back-flumist-2018-19-season. 2018.

  • Mazanec MB, Coudret CL, Fletcher DR. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol. 1995;69:1339–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki T, Kawaguchi A, Ainai A, Tamura S, Ito R, Multihartina P, et al. Relationship of the quaternary construction of human secretory IgA to neutralization of influenza virus. Proc Natl Acad Sci USA. 2015;112:7809–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim BS, Park SM, Quan JS, Jere D, Chu H, Track MK, et al. Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and mobile immune responses. BMC Immunol. 2010;11:65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, et al. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding area of extreme acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces robust mucosal immune responses and gives long-term safety in opposition to SARS-CoV an infection. J Immunol. 2008;180:948–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu MC, Jones T, Kenney RT, Barnard DL, Burt DS, Lowell GH. Intranasal Protollin-formulated recombinant SARS S-protein elicits respiratory and serum neutralizing antibodies and safety in mice. Vaccine. 2007;25:6334–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamijuku H, Nagata Y, Jiang X, Ichinohe T, Tashiro T, Mori Ok, et al. Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which may induce cross-protection in opposition to influenza viruses. Mucosal Immunol. 2008;1:208–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guillonneau C, Mintern JD, Hubert FX, Damage AC, Besra GS, Porcelli S, et al. Mixed NKT cell activation and influenza virus vaccination boosts reminiscence CTL technology and protecting immunity. Proc Natl Acad Sci USA. 2009;106:3330–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dormitzer PR, Galli G, Castellino F, Golding H, Khurana S, Del Giudice G, et al. Influenza vaccine immunology. Immunol Rev. 2011;239:167–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eickhoff CS, Blazevic A, Killoran EA, Morris MS, Hoft DF. Induction of mycobacterial protecting immunity by sublingual BCG vaccination. Vaccine. 2019;37:5364–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallorini S, Taccone M, Bonci A, Nardelli F, Casini D, Bonificio A, et al. Sublingual immunization with a subunit influenza vaccine elicits comparable systemic immune response as intramuscular immunization, but additionally induces native IgA and TH17 responses. Vaccine. 2014;32:2382–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karolewicz B. A evaluation of polymers as multifunctional excipients in drug dosage kind know-how. Saudi Pharm J. 2016;24:525–36.

    Article 
    PubMed 

    Google Scholar
     

  • Piskin E. Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed. 1995;6:775–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piskin E. Biodegradable polymers in drugs. In: Scott G, editor. Degradable polymers. Dordrecht: Springer; 2002.


    Google Scholar
     

  • Merchandise FsRSPfGPP-BD. https://www.americanpharmaceuticalreview.com/Featured-Articles/188841-FDA-s-Regulatory-Science-Program-for-Generic-PLA-PLGA-Primarily based-Drug-Merchandise/. 2016.

  • Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable managed drug supply provider. Polymers. 2011;3:1377–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CC, Nguyen KT. Polymeric nanoparticles for pulmonary protein and DNA supply. Acta Biomater. 2014;10:2643–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L, et al. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a possible animal mannequin for human H1N1 influenza virus. J Virol. 2010;84:11210–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhakal S, Goodman J, Bondra Ok, Lakshmanappa YS, Hiremath J, Shyu DL, et al. Polyanhydride nanovaccine in opposition to swine influenza virus in pigs. Vaccine. 2017;35:1124.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renu S, Feliciano-Ruiz N, Ghimire S, Han Y, Schrock J, Dhakal S, et al. Poly(I:C) augments inactivated influenza virus-chitosan nanovaccine induced cell mediated immune response in pigs vaccinated intranasally. Vet Microbiol. 2020;242: 108611.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhakal S, Renukaradhya GJ. Nanoparticle-based vaccine growth and analysis in opposition to viral infections in pigs. Vet Res. 2019;50:90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhakal S, Ghimire S, Renu S, Ross KA, Lakshmanappa YS, Hogshead BT, et al. Analysis of CpG-ODN-adjuvanted polyanhydride-based intranasal influenza nanovaccine in pigs. Vet Microbiol. 2019;237: 108401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renu S, Dhakal S, Kim E, Goodman J, Lakshmanappa YS, Wannemuehler MJ, et al. Intranasal supply of influenza antigen by nanoparticles, however not NKT-cell adjuvant differentially induces the expression of B-cell activation elements in mice and swine. Cell Immunol. 2018;329:27–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Risma KA, Edwards KM, Hummell DS, Little FF, Norton AE, Stallings A, et al. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. J Allergy Clin Immunol. 2021;147:2075–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forgacs D, Jang H, Abreu RB, Hanley HB, Gattiker JL, Jefferson AM, et al. SARS-CoV-2 mRNA vaccines elicit totally different responses in immunologically naive and pre-immune people. Entrance Immunol. 2021;12: 728021.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergamaschi C, Terpos E, Rosati M, Angel M, Bear J, Stellas D, et al. Systemic IL-15, IFN-gamma, and IP-10/CXCL10 signature related to efficient immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep. 2021;36: 109504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng P, Deng H, Li Z, Chen Y, Fang L, Hu J, et al. Distinct immune responses within the early part to pure SARS-CoV-2 an infection or vaccination. J Med Virol. 2022;94:5691–701.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Zhang Y, Amberson A, Engelhardt JF. New fashions of the tracheal airway outline the glandular contribution to airway floor fluid and electrolyte composition. Am J Respir Cell Mol Biol. 2001;24:195–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Driskell RR, Engelhardt JF. Airway glandular growth and stem cells. Curr High Dev Biol. 2004;64:33–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Luo M, Zhang L, Ding W, Yan Z, Engelhardt JF. Bioelectric properties of chloride channels in human, pig, ferret, and mouse airway epithelia. Am J Respir Cell Mol Biol. 2007;36:313–23.

    Article 
    PubMed 

    Google Scholar
     

  • Frere JJ, Serafini RA, Pryce KD, Zazhytska M, Oishi Ok, Golynker I, et al. SARS-CoV-2 an infection in hamsters and people leads to lasting and distinctive systemic perturbations put up restoration. Sci Transl Med. 2022;229: eabq3059.

    Article 

    Google Scholar
     

  • Studier FW. Protein manufacturing by auto-induction in excessive density shaking cultures. Protein Expr Purif. 2005;41:207–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng X, Tsao C, Saul JM, Sylvia V, Cornet D, Christy R. Comparability of two nanoparticle formulations for localized supply of platelet-derived development issue (PDGF) from aligned collagen fibers. Pharm Nanotechnol. 2013;1:105–14.

    Article 

    Google Scholar
     

  • Cheng X, Carson Ok, Mcdonough J, Gourapura RG, Lee CW, Dhakal S. A liposomal subunit flu vaccine formulation. US Patent software (pending), SwRI invention disclosure docket # 3928 2017.

  • Fry DW, White JC, Goldman ID. Speedy separation of low molecular weight solutes from liposomes with out dilution. Anal Biochem. 1978;90:809–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng X, Haggins DG, York RH, Yeni YN, Akkus O. Evaluation of crystals resulting in joint arthropathies by Raman spectroscopy: comparability with compensated polarized imaging. Appl Spectrosc. 2009;63:381–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramakrishnan MA. Dedication of fifty% endpoint titer utilizing a easy components. World J Virol. 2016;5:85–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carolan LA, Butler J, Rockman S, Guarnaccia T, Damage AC, Studying P, et al. TaqMan actual time RT-PCR assays for detecting ferret innate and adaptive immune responses. J Virol Strategies. 2014;205:38–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Dedication of secure housekeeping genes, differentially regulated goal genes and pattern integrity: BestKeeper–Excel-based instrument utilizing pair-wise correlations. Biotechnol Lett. 2004;26:509–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two(-Delta Delta C(T)) Technique. Strategies. 2001;25:402–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • About the author

    admin

    Leave a Comment