Nanotechnology

Current advances in nanomedicines for regulation of macrophages in wound therapeutic | Journal of Nanobiotechnology

Current advances in nanomedicines for regulation of macrophages in wound therapeutic | Journal of Nanobiotechnology
Written by admin


  • Wang W, Lu Okay, Yu C, Huang Q, Du Y-Z. Nano-drug supply methods in wound remedy and pores and skin regeneration. J Nanobiotechnol. 2019;17:82. https://doi.org/10.1186/s12951-019-0514-y.

    CAS 
    Article 

    Google Scholar
     

  • Naskar A, Kim Okay. Current advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics. 2020;12:499. https://doi.org/10.3390/pharmaceutics12060499.

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Momoh FU, Boateng JS, Richardson SCW, Chowdhry BZ, Mitchell JC. Growth and practical characterization of alginate dressing as potential protein supply system for wound therapeutic. Int J Biol Macromol. 2015;81:137–50. https://doi.org/10.1016/j.ijbiomac.2015.07.037.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sanapalli BKR, Yele V, Singh MK, Thaggikuppe Krishnamurthy P, Karri VVSR. Preclinical fashions of diabetic wound therapeutic: a crucial assessment. Biomed Pharmacother. 2021;142:111946. https://doi.org/10.1016/j.biopha.2021.111946.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Saleh Okay, Sönnergren HH. 5—Management and remedy of contaminated wounds. In: Ågren MS, editor. Wound therapeutic biomaterials. Duxford: Woodhead Publishing; 2016. p. 107–15. https://doi.org/10.1016/B978-1-78242-456-7.00005-2.

    Chapter 

    Google Scholar
     

  • Rajendran S, Anand SC. 14—Woven textiles for medical purposes. In: Gandhi KL, editor. Woven textiles. Sawston: Woodhead Publishing; 2012. p. 414–41. https://doi.org/10.1533/9780857095589.3.414.

    Chapter 

    Google Scholar
     

  • Dai C, Shih S, Khachemoune A. Pores and skin substitutes for acute and power wound therapeutic: an up to date assessment. J Dermatol Deal with. 2020;31:639–48. https://doi.org/10.1080/09546634.2018.1530443.

    CAS 
    Article 

    Google Scholar
     

  • Demidova-Rice TN, Durham JT, Herman IM. Wound therapeutic angiogenesis: improvements and challenges in acute and power wound therapeutic. Adv Wound Care. 2012;1:17–22. https://doi.org/10.1089/wound.2011.0308.

    Article 

    Google Scholar
     

  • Praburaj DV, Anand SC, Dean C, Nettleton R. Conducting scientific trials in woundcare. In: Anand SC, Kennedy JF, Miraftab M, Rajendran S, editors. Medical textiles and biomaterials for healthcare. Cambridge: Woodhead Publishing; 2006. p. 310–9. https://doi.org/10.1533/9781845694104.5.310.

    Chapter 

    Google Scholar
     

  • Noor S, Khan RU, Ahmad J. Understanding diabetic foot an infection and its administration. Diabetes Metab Syndr Clin Res Rev. 2017;11:149–56. https://doi.org/10.1016/j.dsx.2016.06.023.

    Article 

    Google Scholar
     

  • Ahmad J. The diabetic foot. Diabetes Metab Syndr Clin Res Rev. 2016;10:48–60. https://doi.org/10.1016/j.dsx.2015.04.002.

    Article 

    Google Scholar
     

  • Järbrink Okay, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, Automotive J. Prevalence and incidence of power wounds and associated problems: a protocol for a scientific assessment. Syst Rev. 2016;5:152. https://doi.org/10.1186/s13643-016-0329-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinengo L, Olsson M, Bajpai R, Soljak M, Upton Z, Schmidtchen A, Automotive J, Järbrink Okay. Prevalence of power wounds within the basic inhabitants: systematic assessment and meta-analysis of observational research. Ann Epidemiol. 2019;29:8–15. https://doi.org/10.1016/j.annepidem.2018.10.005.

    Article 
    PubMed 

    Google Scholar
     

  • Rieger KA, Birch NP, Schiffman JD. Designing electrospun nanofiber mats to advertise wound therapeutic—a assessment. J Mater Chem B. 2013;1:4531–41. https://doi.org/10.1039/C3TB20795A.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gruen D. Wound therapeutic and vitamin: going past dressings with a balanced care plan. J Am Coll Certif Wound Spec. 2010;2:46–9. https://doi.org/10.1016/j.jcws.2010.11.001.

    Article 

    Google Scholar
     

  • Han G, Ceilley R. Persistent wound therapeutic: a assessment of present administration and coverings. Adv Ther. 2017;34:599–610. https://doi.org/10.1007/s12325-017-0478-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Ma Z, Kong L, He Y, Chan HF, Li H. Modulation of macrophages by bioactive glass/sodium alginate hydrogel is essential in pores and skin regeneration enhancement. Biomaterials. 2020;256:120216. https://doi.org/10.1016/j.biomaterials.2020.120216.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The position of macrophages in acute and power wound therapeutic and interventions to advertise pro-wound therapeutic phenotypes. Entrance Physiol. 2018;9:419. https://doi.org/10.3389/fphys.2018.00419.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: a possibility for improved outcomes in biomaterials and regenerative medication. Biomaterials. 2012;33:3792–802. https://doi.org/10.1016/j.biomaterials.2012.02.034.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minutti CM, Knipper JA, Allen JE, Zaiss DMW. Tissue-specific contribution of macrophages to wound therapeutic. Semin Cell Dev Biol. 2017;61:3–11. https://doi.org/10.1016/j.semcdb.2016.08.006.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14:81–93. https://doi.org/10.1038/nri3600.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    Article 

    Google Scholar
     

  • Ley Okay. M1 means kill; M2 means heal. J Immunol. 2017;199:2191–3. https://doi.org/10.4049/jimmunol.1701135.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. Macrophage features in wound therapeutic. J Tissue Eng Regen Med. 2019;13:99–109. https://doi.org/10.1002/time period.2772.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kim SY, Nair MG. Macrophages in wound therapeutic: activation and plasticity. Immunol Cell Biol. 2019;97:258–67. https://doi.org/10.1111/imcb.12236.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound therapeutic. Adv Wound Care. 2012;1:10–6. https://doi.org/10.1089/wound.2011.0307.

    Article 

    Google Scholar
     

  • Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage features by ECM-inspired wound dressings—a promising therapeutic method for power wounds. Biol Chem. 2021;402:1289–307. https://doi.org/10.1515/hsz-2021-0145.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Caputa G, Flachsmann LJ, Cameron AM. Macrophage metabolism: a wound-healing perspective. Immunol Cell Biol. 2019;97:268–78. https://doi.org/10.1111/imcb.12237.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Spiller KL, Koh TJ. Macrophage-based therapeutic methods in regenerative medication. Adv Drug Deliv Rev. 2017;122:74–83. https://doi.org/10.1016/j.addr.2017.05.010.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez MM, Liu JC, Trujillo-de Santiago G, Cha B-H, Vishwakarma A, Ghaemmaghami AM, Khademhosseini A. Supply methods to regulate inflammatory response: modulating M1–M2 polarization in tissue engineering purposes. J Management Launch. 2016;240:349–63. https://doi.org/10.1016/j.jconrel.2016.01.026.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subbiahdoss G, Sharifi S, Grijpma DW, Laurent S, van der Mei HC, Mahmoudi M, Busscher HJ. Magnetic concentrating on of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy in opposition to biofilms of gentamicin-resistant staphylococci. Acta Biomater. 2012;8:2047–55. https://doi.org/10.1016/j.actbio.2012.03.002.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chu C, Deng J, Liu L, Cao Y, Wei X, Li J, Man Y. Nanoparticles mixed with development elements: current progress and purposes. RSC Adv. 2016;6:90856–72. https://doi.org/10.1039/C6RA13636B.

    CAS 
    Article 

    Google Scholar
     

  • Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP. Results of cerium oxide nanoparticles on the expansion of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound therapeutic. Biomaterials. 2013;34:2194–201. https://doi.org/10.1016/j.biomaterials.2012.11.061.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kim JE, Lee J, Jang M, Kwak MH, Go J, Kho EK, Music SH, Sung JE, Lee J, Hwang DY. Accelerated therapeutic of cutaneous wounds utilizing phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes. Biomater Sci. 2015;3:509–19. https://doi.org/10.1039/C4BM00390J.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in therapeutic power wounds: alternatives and challenges. Mol Pharm. 2021;18:550–75. https://doi.org/10.1021/acs.molpharmaceut.0c00346.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mei L, Fan R, Li X, Wang Y, Han B, Gu Y, Zhou L, Zheng Y, Tong A, Guo G. Nanofibers for enhancing the wound restore course of: the mixture of a grafted chitosan and an antioxidant agent. Polym Chem. 2017;8:1664–71. https://doi.org/10.1039/C7PY00038C.

    CAS 
    Article 

    Google Scholar
     

  • Mashinchian O, Bonakdar S, Taghinejad H, Satarifard V, Heidari M, Majidi M, Sharifi S, Peirovi A, Saffar S, Taghinejad M, Abdolahad M, Mohajerzadeh S, Shokrgozar MA, Rezayat SM, Ejtehadi MR, Dalby MJ, Mahmoudi M. Cell-imprinted substrates act as a synthetic area of interest for pores and skin regeneration. ACS Appl Mater Interfaces. 2014;6:13280–92. https://doi.org/10.1021/am503045b.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kim HN, Hong Y, Kim MS, Kim SM, Suh Okay-Y. Impact of orientation and density of nanotopography in dermal wound therapeutic. Biomaterials. 2012;33:8782–92. https://doi.org/10.1016/j.biomaterials.2012.08.038.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Joorabloo A, Khorasani MT, Adeli H, Mansoori-Moghadam Z, Moghaddam A. Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels utilizing synthetic neural community for wound dressing utility. J Ind Eng Chem. 2019. https://doi.org/10.1016/j.jiec.2018.10.022.

    Article 

    Google Scholar
     

  • Khorasani MT, Joorabloo A, Adeli H, Milan PB, Amoupour M. Enhanced antimicrobial and full-thickness wound therapeutic effectivity of hydrogels loaded with heparinized ZnO nanoparticles: in vitro and in vivo analysis. Int J Biol Macromol. 2020. https://doi.org/10.1016/j.ijbiomac.2020.10.142.

    Article 
    PubMed 

    Google Scholar
     

  • Joorabloo A, Khorasani MT, Adeli H, Brouki Milan P, Amoupour M. Utilizing synthetic neural community for design and improvement of PVA/chitosan/starch/heparinized nZnO hydrogels for enhanced wound therapeutic. J Ind Eng Chem. 2021. https://doi.org/10.1016/j.jiec.2021.12.027.

    Article 

    Google Scholar
     

  • Rahimi HR, Nedaeinia R, SepehriShamloo A, Nikdoust S, KazemiOskuee R. Novel supply system for pure merchandise: nano-curcumin formulations. Avicenna J Phytomed. 2016;6:383–98.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dizaj SM, Vazifehasl Z, Salatin S, Adibkia Okay, Javadzadeh Y. Nanosizing of medication: impact on dissolution charge. Res Pharm Sci. 2015;10:95–108.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei Z, Zhang Y, Wang L, Wang Z, Chen S, Bao J, Xie Y, Su B, Zhao C. Photoenhanced dual-functional nanomedicine for selling wound therapeutic: shifting focus from micro organism eradication to host microenvironment modulation. ACS Appl Mater Interfaces. 2021;13:32316–31. https://doi.org/10.1021/acsami.1c08875.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gaspar N, Zambito G, Löwik MWGC, Mezzanotte L. Lively nano-targeting of macrophages. Curr Pharm Des. 2019;25:1951–61. https://doi.org/10.2174/1381612825666190710114108.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zang X, Cheng M, Zhang X, Chen X. Concentrating on macrophages utilizing nanoparticles: a possible therapeutic technique for atherosclerosis. J Mater Chem B. 2021;9:3284–94. https://doi.org/10.1039/D0TB02956D.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Wan M, Lyon CJ, Hu TY. Nanomedicine therapies modulating macrophage dysfunction: a possible technique to attenuate cytokine storms in extreme infections. Theranostics. 2020;10:9591–600. https://doi.org/10.7150/thno.47982.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Geng X, Hou J, Wu G. New insights into M1/M2 macrophages: key modulators in most cancers development. Most cancers Cell Int. 2021;21:389. https://doi.org/10.1186/s12935-021-02089-2.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elliott MR, Koster KM, Murphy PS. Efferocytosis signaling within the regulation of macrophage inflammatory responses. J Immunol. 2017;198:1387–94. https://doi.org/10.4049/jimmunol.1601520.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sandoval Pacheco CM, Araujo Flores GV, Gonzalez Okay, de Castro Gomes CM, Passero LFD, Tomokane TY, Sosa-Ochoa W, Zúniga C, Calzada J, Saldaña A, Corbett CEP, Silveira FT, Laurenti MD. Macrophage polarization within the pores and skin lesion brought on by neotropical species of Leishmania sp. J Immunol Res. 2021;2021:5596876. https://doi.org/10.1155/2021/5596876.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills CD. M1 and M2 macrophages: oracles of well being and illness. Crit Rev Immunol. 2012;32:463–88. https://doi.org/10.1615/CritRevImmunol.v32.i6.10.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Koh TJ, DiPietro LA. Irritation and wound therapeutic: the position of the macrophage. Professional Rev Mol Med. 2011;13:e23. https://doi.org/10.1017/S1462399411001943.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landén NX, Li D, Ståhle M. Transition from irritation to proliferation: a crucial step throughout wound therapeutic. Cell Mol Life Sci. 2016;73:3861–85. https://doi.org/10.1007/s00018-016-2268-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. practical differentiation. Entrance Immunol. 2014;5:514. https://doi.org/10.3389/fimmu.2014.00514.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moghadam ZM, Henneke P, Kolter J. From flies to males: ROS and the NADPH oxidase in phagocytes. Entrance Cell Dev Biol. 2021;9:618. https://doi.org/10.3389/fcell.2021.628991.

    Article 

    Google Scholar
     

  • Silva MT. When two is healthier than one: macrophages and neutrophils work in live performance in innate immunity as complementary and cooperative companions of a myeloid phagocyte system. J Leukoc Biol. 2010;87:93–106. https://doi.org/10.1189/jlb.0809549.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ashouri F, Beyranvand F, BeigiBoroujeni N, Tavafi M, Sheikhian A, Varzi AM, Shahrokhi S. Macrophage polarization in wound therapeutic: position of aloe vera/chitosan nanohydrogel. Drug Deliv Transl Res. 2019;9:1027–42. https://doi.org/10.1007/s13346-019-00643-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and power wound therapeutic. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071545.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leukoc Biol. 2010;87:59–67. https://doi.org/10.1189/jlb.0409236.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Orecchioni M, Ghosheh Y, Pramod AB, Ley Okay. Macrophage polarization: totally different gene signatures in M1(LPS+) vs. classically and M2(LPS−) vs. alternatively activated macrophages. Entrance Immunol. 2019;10:1084. https://doi.org/10.3389/fimmu.2019.01084.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The affect of interferon-regulatory elements to macrophage differentiation and polarization into M1 and M2. Immunobiology. 2018;223:101–11. https://doi.org/10.1016/j.imbio.2017.10.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wolf SJ, Melvin WJ, Gallagher Okay. Macrophage-mediated irritation in diabetic wound restore. Semin Cell Dev Biol. 2021;119:111–8. https://doi.org/10.1016/j.semcdb.2021.06.013.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic swap of M1 to M2 macrophages for cutaneous wound therapeutic. Adv Sci. 2019;6:1900513. https://doi.org/10.1002/advs.201900513.

    CAS 
    Article 

    Google Scholar
     

  • Kotwal GJ, Chien S. Macrophage differentiation in regular and accelerated wound therapeutic. Macrophages. 2017;62:353–64.

    CAS 
    Article 

    Google Scholar
     

  • Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, Lucas B, Lammens J, Ghanbari H, Teimoori-Toolabi L, Vervaet C, De Beer T, Faridi-Majidi R, De Smedt SC, Braeckmans Okay, Fraire JC. Macrophage reprogramming right into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound therapeutic purposes. Nanoscale. 2021;13:15445–63. https://doi.org/10.1039/D1NR03830C.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Miao M, Niu Y, Xie T, Yuan B, Qing C, Lu S. Diabetes-impaired wound therapeutic and altered macrophage activation: a doable pathophysiologic correlation. Wound Restore Regen. 2012;20:203–13. https://doi.org/10.1111/j.1524-475X.2012.00772.x.

    Article 
    PubMed 

    Google Scholar
     

  • Seraphim PM, Leal EC, Moura J, Gonçalves P, Gonçalves JP, Carvalho E. Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound therapeutic. Life Sci. 2020;254: 117813. https://doi.org/10.1016/j.lfs.2020.117813.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Leal EC, Carvalho E, Tellechea A, Kafanas A, Tecilazich F, Kearney C, Kuchibhotla S, Auster ME, Kokkotou E, Mooney DJ, LoGerfo FW, Pradhan-Nabzdyk L, Veves A. Substance P promotes wound therapeutic in diabetes by modulating irritation and macrophage phenotype. Am J Pathol. 2015;185:1638–48. https://doi.org/10.1016/j.ajpath.2015.02.011.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burke B, Sumner S, Maitland N, Lewis CE. Macrophages in gene remedy: mobile supply autos and in vivo targets. J Leukoc Biol. 2002;72:417–28. https://doi.org/10.1189/jlb.72.3.417.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jetten N, Roumans N, Gijbels MJ, Romano A, Put up MJ, de Winther MPJ, van der Hulst RRWJ, Xanthoulea S. Wound administration of M2-polarized macrophages doesn’t enhance murine cutaneous therapeutic responses. PLoS ONE. 2014;9: e102994. https://doi.org/10.1371/journal.pone.0102994.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goren I, Müller E, Schiefelbein D, Christen U, Pfeilschifter J, Mühl H, Frank S. Systemic anti-TNFα remedy restores diabetes-impaired pores and skin restore in ob/ob mice by inactivation of macrophages. J Make investments Dermatol. 2007;127:2259–67. https://doi.org/10.1038/sj.jid.5700842.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves therapeutic in kind 2 diabetes. Diabetes. 2013;62:2579–87. https://doi.org/10.2337/db12-1450.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashcroft GS, Jeong M-J, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, Wild T, McCartney-Francis N, Sim D, McGrady G, Music X, Wahl SM. Tumor necrosis factor-alpha (TNF-α) is a therapeutic goal for impaired cutaneous wound therapeutic. Wound Restore Regen. 2012;20:38–49. https://doi.org/10.1111/j.1524-475X.2011.00748.x.

    Article 
    PubMed 

    Google Scholar
     

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. PERSPECTIVE ARTICLE: development elements and cytokines in wound therapeutic. Wound Restore Regen. 2008;16:585–601. https://doi.org/10.1111/j.1524-475X.2008.00410.x.

    Article 
    PubMed 

    Google Scholar
     

  • Hu G, Guo M, Xu J, Wu F, Fan J, Huang Q, Yang G, Lv Z, Wang X, Jin Y. Nanoparticles concentrating on macrophages as potential scientific therapeutic brokers in opposition to most cancers and irritation. Entrance Immunol. 2019;10:1998. https://doi.org/10.3389/fimmu.2019.01998.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sridharan R, Cameron AR, Kelly DJ, Kearney CJ, O’Brien FJ. Biomaterial based mostly modulation of macrophage polarization: a assessment and advised design ideas. Mater Immediately. 2015;18:313–25. https://doi.org/10.1016/j.mattod.2015.01.019.

    CAS 
    Article 

    Google Scholar
     

  • Kulinets I. Biomaterials and their purposes in medication. Regul Aff Biomater Med Units. 2015. https://doi.org/10.1533/9780857099204.1.

    Article 

    Google Scholar
     

  • Abaricia JO, Shah AH, Chaubal M, Hotchkiss KM, Olivares-Navarrete R. Wnt signaling modulates macrophage polarization and is regulated by biomaterial floor properties. Biomaterials. 2020;243: 119920. https://doi.org/10.1016/j.biomaterials.2020.119920.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sheikh Z, Brooks PJ, Barzilay O, Nice N, Glogauer M. Macrophages, international physique big cells and their response to implantable biomaterials. Supplies (Basel). 2015;8:5671–701. https://doi.org/10.3390/ma8095269.

    CAS 
    Article 

    Google Scholar
     

  • Xia Z, Triffitt JT. A assessment on macrophage responses to biomaterials. Biomed Mater. 2006;1:R1–9. https://doi.org/10.1088/1748-6041/1/1/r01.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Boersema GSA, Grotenhuis N, Bayon Y, Lange JF, Bastiaansen-Jenniskens YM. The impact of biomaterials used for tissue regeneration functions on polarization of macrophages. BioRes Open Entry. 2016;5:6–14. https://doi.org/10.1089/biores.2015.0041.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamoto T, Takagi Y, Kawamoto E, Park EJ, Usuda H, Wada Okay, Shimaoka M. Lowered substrate stiffness promotes M2-like macrophage activation and enhances peroxisome proliferator-activated receptor γ expression. Exp Cell Res. 2018;367:264–73. https://doi.org/10.1016/j.yexcr.2018.04.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou H, Xue Y, Dong L, Wang C. Biomaterial-based bodily regulation of macrophage behaviour. J Mater Chem B. 2021;9:3608–21. https://doi.org/10.1039/D1TB00107H.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ribeiro S, Carvalho AM, Fernandes EM, Gomes ME, Reis RL, Bayon Y, Zeugolis DI. Growth and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation charge. Acta Biomater. 2021;121:303–15. https://doi.org/10.1016/j.actbio.2020.11.026.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Davenport Huyer L, Pascual-Gil S, Wang Y, Mandla S, Yee B, Radisic M. Superior methods for modulation of the material-macrophage interface. Adv Funct Mater. 2020;30:1909331. https://doi.org/10.1002/adfm.201909331.

    CAS 
    Article 

    Google Scholar
     

  • Li Z, Bratlie KM. Macrophage phenotypic modifications on FN-coated bodily gradient hydrogels. ACS Appl Bio Mater. 2021;4:6758–68. https://doi.org/10.1021/acsabm.1c00489.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen M, Zhang Y, Zhou P, Liu X, Zhao H, Zhou X, Gu Q, Li B, Zhu X, Shi Q. Substrate stiffness modulates bone marrow-derived macrophage polarization by means of NF-κB signaling pathway. Bioact Mater. 2020;5:880–90. https://doi.org/10.1016/j.bioactmat.2020.05.004.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sridharan R, Cavanagh B, Cameron AR, Kelly DJ, O’Brien FJ. Materials stiffness influences the polarization state, operate and migration mode of macrophages. Acta Biomater. 2019;89:47–59. https://doi.org/10.1016/j.actbio.2019.02.048.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Camarero-Espinosa S, Carlos-Oliveira M, Liu H, Mano JF, Bouvy N, Moroni L. 3D printed dual-porosity scaffolds: the mixed impact of stiffness and porosity within the modulation of macrophage polarization. Adv Healthc Mater. 2022;11:2101415. https://doi.org/10.1002/adhm.202101415.

    CAS 
    Article 

    Google Scholar
     

  • Scott RA, Kiick KL, Akins RE. Substrate stiffness directs the phenotype and polarization state of twine blood derived macrophages. Acta Biomater. 2021;122:220–35. https://doi.org/10.1016/j.actbio.2020.12.040.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yao D, Qiao F, Music C, Lv Y. Matrix stiffness regulates bone restore by modulating 12-lipoxygenase-mediated early irritation. Mater Sci Eng C. 2021;128: 112359. https://doi.org/10.1016/j.msec.2021.112359.

    CAS 
    Article 

    Google Scholar
     

  • Rostam HM, Singh S, Vrana NE, Alexander MR, Ghaemmaghami AM. Influence of floor chemistry and topography on the operate of antigen presenting cells. Biomater Sci. 2015;3:424–41. https://doi.org/10.1039/C4BM00375F.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li M, Guo X, Qi W, Wu Z, de Bruijn JD, Xiao Y, Bao C, Yuan H. Macrophage polarization performs roles in bone formation instructed by calcium phosphate ceramics. J Mater Chem B. 2020;8:1863–77. https://doi.org/10.1039/C9TB02932J.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sutherland J, Denyer M, Britland S. Contact steerage in human dermal fibroblasts is modulated by inhabitants stress. J Anat. 2005;206:581–7. https://doi.org/10.1111/j.1469-7580.2005.00415.x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wennerberg A, Albrektsson T, Andersson B. An animal research of cp titanium screws with totally different floor topographies. J Mater Sci Mater Med. 1995;6:302–9. https://doi.org/10.1007/BF00120275.

    CAS 
    Article 

    Google Scholar
     

  • Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, Hauch KD, Laflamme MA, Murry CE, Ratner BD. Proangiogenic scaffolds as practical templates for cardiac tissue engineering. Proc Natl Acad Sci. 2010;107:15211–6. https://doi.org/10.1073/pnas.1006442107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chehroudi B, Ghrebi S, Murakami H, Waterfield JD, Owen G, Brunette DM. Bone formation on tough, however not polished, subcutaneously implanted Ti surfaces is preceded by macrophage accumulation. J Biomed Mater Res Half A. 2010;93A:724–37. https://doi.org/10.1002/jbm.a.32587.

    CAS 
    Article 

    Google Scholar
     

  • Barth KA, Waterfield JD, Brunette DM. The impact of floor roughness on RAW 264.7 macrophage phenotype. J Biomed Mater Res Half A. 2013;101A:2679–88. https://doi.org/10.1002/jbm.a.34562.

    Article 

    Google Scholar
     

  • Zhang Y, Cheng X, Jansen JA, Yang F, van den Beucken JJJP. Titanium surfaces traits modulate macrophage polarization. Mater Sci Eng C. 2019;95:143–51. https://doi.org/10.1016/j.msec.2018.10.065.

    CAS 
    Article 

    Google Scholar
     

  • Kosoff D, Yu J, Suresh V, Beebe DJ, Lang JM. Floor topography and hydrophilicity regulate macrophage phenotype in milled microfluidic methods. Lab Chip. 2018;18:3011–7. https://doi.org/10.1039/C8LC00431E.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wissing TB, Bonito V, van Haaften EE, van Doeselaar M, Brugmans MMCP, Janssen HM, Bouten CVC, Smits AIPM. Macrophage-driven biomaterial degradation will depend on scaffold microarchitecture. Entrance Bioeng Biotechnol. 2019;7:87. https://doi.org/10.3389/fbioe.2019.00087.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sussman EM, Halpin MC, Muster J, Moon RT, Ratner BD. Porous implants modulate therapeutic and induce shifts in native macrophage polarization within the international physique response. Ann Biomed Eng. 2014;42:1508–16. https://doi.org/10.1007/s10439-013-0933-0.

    Article 
    PubMed 

    Google Scholar
     

  • Yin Y, He X-T, Wang J, Wu R-X, Xu X-Y, Hong Y-L, Tian B-M, Chen F-M. Pore size-mediated macrophage M1-to-M2 transition influences new vessel formation inside the compartment of a scaffold. Appl Mater Immediately. 2020;18: 100466. https://doi.org/10.1016/j.apmt.2019.100466.

    Article 

    Google Scholar
     

  • Bachhuka A, MadathiparambilVisalakshan R, Legislation CS, Santos A, Ebendorff-Heidepriem H, Karnati S, Vasilev Okay. Modulation of macrophages differentiation by nanoscale-engineered geometric and chemical options. ACS Appl Bio Mater. 2020;3:1496–505. https://doi.org/10.1021/acsabm.9b01125.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jia Y, Yang W, Zhang Okay, Qiu S, Xu J, Wang C, Chai Y. Nanofiber association regulates peripheral nerve regeneration by means of differential modulation of macrophage phenotypes. Acta Biomater. 2019;83:291–301. https://doi.org/10.1016/j.actbio.2018.10.040.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mao J, Chen L, Cai Z, Qian S, Liu Z, Zhao B, Zhang Y, Solar X, Cui W. Superior biomaterials for regulating polarization of macrophages in wound therapeutic. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202111003.

    Article 

    Google Scholar
     

  • Bygd HC, Forsmark KD, Bratlie KM. Altering in vivo macrophage responses with modified polymer properties. Biomaterials. 2015;56:187–97. https://doi.org/10.1016/j.biomaterials.2015.03.042.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lv L, Xie Y, Li Okay, Hu T, Lu X, Cao Y, Zheng X. Unveiling the mechanism of floor hydrophilicity-modulated macrophage polarization. Adv Healthc Mater. 2018;7:1800675. https://doi.org/10.1002/adhm.201800675.

    CAS 
    Article 

    Google Scholar
     

  • Visalakshan RM, MacGregor MN, Sasidharan S, Ghazaryan A, Mierczynska-Vasilev AM, Morsbach S, Mailänder V, Landfester Okay, Hayball JD, Vasilev Okay. Biomaterial floor hydrophobicity-mediated serum protein adsorption and immune responses. ACS Appl Mater Interfaces. 2019;11:27615–23. https://doi.org/10.1021/acsami.9b09900.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gao S, Lu R, Wang X, Chou J, Wang N, Huai X, Wang C, Zhao Y, Chen S. Immune response of macrophages on super-hydrophilic TiO2 nanotube arrays. J Biomater Appl. 2020;34:1239–53. https://doi.org/10.1177/0885328220903249.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pérez-Calixto M, Diaz-Rodriguez P, Concheiro A, Alvarez-Lorenzo C, Burillo G. Amino-functionalized polymers by gamma radiation and their affect on macrophage polarization. React Funct Polym. 2020;151: 104568. https://doi.org/10.1016/j.reactfunctpolym.2020.104568.

    CAS 
    Article 

    Google Scholar
     

  • Wang Y, Yao D, Li L, Qian Z, He W, Ding R, Liu H, Fan Y. Impact of electrospun silk fibroin-silk sericin movies on macrophage polarization and vascularization. ACS Biomater Sci Eng. 2020;6:3502–12. https://doi.org/10.1021/acsbiomaterials.0c00175.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound therapeutic: from materials sciences to wound therapeutic purposes. Nano Choose. 2020;1:443–60. https://doi.org/10.1002/nano.202000055.

    Article 

    Google Scholar
     

  • Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound therapeutic and an infection management. Supplies. 2019. https://doi.org/10.3390/ma12132176.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medrano-Bosch M, Moreno-Lanceta A, Melgar-Lesmes P. Nanoparticles to focus on and deal with macrophages: the Ockham’s idea? Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13091340.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong X, Chang J, Li H. Bioglass promotes wound therapeutic by means of modulating the paracrine results between macrophages and repairing cells. J Mater Chem B. 2017;5:5240–50. https://doi.org/10.1039/C7TB01211J.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xie W, Fu X, Tang F, Mo Y, Cheng J, Wang H, Chen X. Dose-dependent modulation results of bioactive glass particles on macrophages and diabetic wound therapeutic. J Mater Chem B. 2019;7:940–52. https://doi.org/10.1039/C8TB02938E.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mârza SM, Magyari Okay, Bogdan S, Moldovan M, Peştean C, Nagy A, Tăbăran F, Licarete E, Suarasan S, Dreanca A, Baia L, Papuc I. Pores and skin wound regeneration with bioactive glass-gold nanoparticles ointment. Biomed Mater. 2019;14:25011. https://doi.org/10.1088/1748-605x/aafd7d.

    CAS 
    Article 

    Google Scholar
     

  • Wu H, Li F, Wang S, Lu J, Li J, Du Y, Solar X, Chen X, Gao J, Ling D. Ceria nanocrystals embellished mesoporous silica nanoparticle based mostly ROS-scavenging tissue adhesive for extremely environment friendly regenerative wound therapeutic. Biomaterials. 2018;151:66–77. https://doi.org/10.1016/j.biomaterials.2017.10.018.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Younan GJ, Heit YI, Dastouri P, Kekhia H, Xing W, Gurish MF, Orgill DP. Mast cells are required within the proliferation and transforming phases of microdeformational wound remedy. Plast Reconstr Surg. 2011;128:649e–58e. https://doi.org/10.1097/PRS.0b013e318230c55d.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A assessment on nanoparticle based mostly remedy for wound therapeutic. J Drug Deliv Sci Technol. 2018;44:421–30. https://doi.org/10.1016/j.jddst.2018.01.009.

    CAS 
    Article 

    Google Scholar
     

  • Kim TH, Jung Y, Kim SH. Nanofibrous electrospun coronary heart decellularized extracellular matrix-based hybrid scaffold as wound dressing for decreasing scarring in wound therapeutic. Tissue Eng Half A. 2017;24:830–48. https://doi.org/10.1089/ten.tea.2017.0318.

    CAS 
    Article 

    Google Scholar
     

  • Liu S, Zhang Q, Yu J, Shao N, Lu H, Guo J, Qiu X, Zhou D, Huang Y. Absorbable thioether grafted hyaluronic acid nanofibrous hydrogel for synergistic modulation of irritation microenvironment to speed up power diabetic wound therapeutic. Adv Healthc Mater. 2020;9:2000198. https://doi.org/10.1002/adhm.202000198.

    CAS 
    Article 

    Google Scholar
     

  • Solar L, Li J, Gao W, Shi M, Tang F, Fu X, Chen X. Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition within the wound therapeutic course of selling pores and skin regeneration by means of enhancing immunomodulation. J Mater Chem B. 2021;9:1395–405. https://doi.org/10.1039/D0TB01933J.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kaymakcalan OE, Abadeer A, Goldufsky JW, Galili U, Karinja SJ, Dong X, Jin JL, Samadi A, Spector JA. Topical α-gal nanoparticles speed up diabetic wound therapeutic. Exp Dermatol. 2020;29:404–13. https://doi.org/10.1111/exd.14084.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Criado-Gonzalez M, Espinosa-Cano E, Rojo L, Boulmedais F, Aguilar MR, Hernández R. Injectable tripeptide/polymer nanoparticles supramolecular hydrogel: a candidate for the remedy of inflammatory pathologies. ACS Appl Mater Interfaces. 2022;14:10068–80. https://doi.org/10.1021/acsami.1c22993.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Peled E, Sosnik A. Amphiphilic galactomannan nanoparticles set off the choice activation of murine macrophages. J Management Launch. 2021;339:473–83. https://doi.org/10.1016/j.jconrel.2021.10.017.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu Q, Kim Y-J, Im G-B, Zhu J, Wu Y, Liu Y, Bhang SH. Inorganic nanoparticles utilized as practical therapeutics. Adv Funct Mater. 2021;31:2008171. https://doi.org/10.1002/adfm.202008171.

    CAS 
    Article 

    Google Scholar
     

  • Cheng J, Zhang Q, Fan S, Zhang A, Liu B, Hong Y, Guo J, Cui D, Music J. The vacuolization of macrophages induced by giant quantities of inorganic nanoparticle uptake to boost the immune response. Nanoscale. 2019;11:22849–59. https://doi.org/10.1039/C9NR08261A.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • You C, Li Q, Wang X, Wu P, Ho JK, Jin R, Zhang L, Shao H, Han C. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound therapeutic by way of regulating fibroblast migration and macrophage activation. Sci Rep. 2017;7:10489. https://doi.org/10.1038/s41598-017-10481-0.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhikari U, An X, Rijal N, Hopkins T, Khanal S, Chavez T, Tatu R, Sankar J, Little KJ, Hom DB, Bhattarai N, Pixley SK. Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical purposes. Acta Biomater. 2019;98:215–34. https://doi.org/10.1016/j.actbio.2019.04.061.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gan J, Liu C, Li H, Wang S, Wang Z, Kang Z, Huang Z, Zhang J, Wang C, Lv D, Dong L. Accelerated wound therapeutic in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials. 2019;219: 119340. https://doi.org/10.1016/j.biomaterials.2019.119340.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xiang J, Zhu R, Lang S, Yan H, Liu G, Peng B. Mussel-inspired immobilization of zwitterionic silver nanoparticles towards antibacterial cotton gauze for selling wound therapeutic. Chem Eng J. 2021;409: 128291. https://doi.org/10.1016/j.cej.2020.128291.

    CAS 
    Article 

    Google Scholar
     

  • Daghian SG, Farahpour MR, Jafarirad S. Organic fabrication and electrostatic points of interest of recent layered silver/talc nanocomposite utilizing Lawsonia inermis L. and its chitosan-capped inorganic/natural hybrid: investigation on acceleration of Staphylococcus aureus and Pseudomonas aeruginosa contaminated wound therapeutic. Mater Sci Eng C. 2021;128: 112294. https://doi.org/10.1016/j.msec.2021.112294.

    CAS 
    Article 

    Google Scholar
     

  • ChoodariGharehpapagh A, Farahpour MR, Jafarirad S. The organic synthesis of gold/perlite nanocomposite utilizing Urtica dioica extract and its chitosan-capped spinoff for therapeutic wounds contaminated with methicillin-resistant Staphylococcus aureus. Int J Biol Macromol. 2021;183:447–56. https://doi.org/10.1016/j.ijbiomac.2021.04.150.

    CAS 
    Article 

    Google Scholar
     

  • Zhu S, Dai Q, Yao L, Wang Z, He Z, Li M, Wang H, Li Q, Gao H, Cao X. Engineered multifunctional nanocomposite hydrogel dressing to advertise vascularization and anti-inflammation by sustained releasing of Mg2+ for diabetic wounds. Compos Half B Eng. 2022;231: 109569. https://doi.org/10.1016/j.compositesb.2021.109569.

    CAS 
    Article 

    Google Scholar
     

  • Orlowski P, Zmigrodzka M, Tomaszewska E, Ranoszek-Soliwoda Okay, Czupryn M, Antos-Bielska M, Szemraj J, Celichowski G, Grobelny J, Krzyzowska M. Tannic acid-modified silver nanoparticles for wound therapeutic: the significance of dimension. Int J Nanomed. 2018;13:991.

    CAS 
    Article 

    Google Scholar
     

  • Wu J, Zhu J, Wu Q, An Y, Wang Okay, Xuan T, Zhang J, Music W, He H, Music L, Zheng J, Xiao J. Mussel-inspired floor immobilization of heparin on magnetic nanoparticles for enhanced wound restore by way of sustained launch of a development issue and M2 macrophage polarization. ACS Appl Mater Interfaces. 2021;13:2230–44. https://doi.org/10.1021/acsami.0c18388.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gubitosa J, Rizzi V, Fini P, Laurenzana A, Fibbi G, Veiga-Villauriz C, Fanelli F, Fracassi F, Onzo A, Bianco G, Gaeta C, Guerrieri A, Cosma P. Biomolecules from snail mucus (Helix aspersa) conjugated gold nanoparticles, exhibiting potential wound therapeutic and anti inflammatory exercise. Gentle Matter. 2020;16:10876–88. https://doi.org/10.1039/D0SM01638A.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu L, Ding Z, Yang Y, Zhang Z, Lu Q, Kaplan DL. Asiaticoside-laden silk nanofiber hydrogels to control irritation and angiogenesis for scarless pores and skin regeneration. Biomater Sci. 2021;9:5227–36. https://doi.org/10.1039/D1BM00904D.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saleh B, Dhaliwal HK, Portillo-Lara R, Shirzaei Sani E, Abdi R, Amiji MM, Annabi N. Native immunomodulation utilizing an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound therapeutic. Small. 2019;15:1902232. https://doi.org/10.1002/smll.201902232.

    CAS 
    Article 

    Google Scholar
     

  • Hu C, Zhang F, Lengthy L, Kong Q, Luo R, Wang Y. Twin-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial exercise and accelerated wound therapeutic. J Management Launch. 2020;324:204–17. https://doi.org/10.1016/j.jconrel.2020.05.010.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ding L-G, Wang S, Yao B-J, Li F, Li Y-A, Zhao G-Y, Dong Y-B. Synergistic antibacterial and anti inflammatory results of a drug-loaded self-standing porphyrin-COF membrane for environment friendly pores and skin wound therapeutic. Adv Healthc Mater. 2021;10:2001821. https://doi.org/10.1002/adhm.202001821.

    CAS 
    Article 

    Google Scholar
     

  • Zhang G, Xue H, Solar D, Yang S, Tu M, Zeng R. Gentle apoptotic-cell-inspired nanoparticles persistently bind to macrophage membranes and promote anti-inflammatory and pro-healing results. Acta Biomater. 2021;131:452–63. https://doi.org/10.1016/j.actbio.2021.07.002.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and artificial polymer-based nanocomposites in wound dressing purposes: a assessment. Polymers. 2021. https://doi.org/10.3390/polym13121962.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dulińska-Litewka J, Dykas Okay, Felkle D, Karnas Okay, Khachatryan G, Karewicz A. Hyaluronic acid-silver nanocomposites and their biomedical purposes: a assessment. Supplies. 2022. https://doi.org/10.3390/ma15010234.

    Article 

    Google Scholar
     

  • Mebert AM, Alvarez GS, Peroni R, Illoul C, Hélary C, Coradin T, Desimone MF. Collagen-silica nanocomposites as dermal dressings stopping an infection in vivo. Mater Sci Eng C. 2018;93:170–7. https://doi.org/10.1016/j.msec.2018.07.078.

    CAS 
    Article 

    Google Scholar
     

  • Wang P, Jiang S, Li Y, Luo Q, Lin J, Hu L, Liu X, Xue F. Virus-like mesoporous silica-coated plasmonic Ag nanocube with robust micro organism adhesion for diabetic wound ulcer therapeutic. Nanomed Nanotechnol Biol Med. 2021;34: 102381. https://doi.org/10.1016/j.nano.2021.102381.

    CAS 
    Article 

    Google Scholar
     

  • Maheen S, Younis H, Khan HU, Salman Shafqat S, Ali S, Rehman AU, Ilyas S, Zafar MN, Shafqat SR, Kalam A, Al-Ghamdi AA. Enhanced antifungal and wound therapeutic efficacy of statistically optimized, physicochemically evaluated econazole-triamcinolone loaded silica nanoparticles. Entrance Chem. 2022. https://doi.org/10.3389/fchem.2022.836678.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • About the author

    admin

    Leave a Comment