Nanotechnology

Good nanoparticles and microbeads for interventional embolization remedy of liver most cancers: cutting-edge | Journal of Nanobiotechnology

Good nanoparticles and microbeads for interventional embolization remedy of liver most cancers: cutting-edge | Journal of Nanobiotechnology
Written by admin


  • Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.


    Google Scholar
     

  • Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A worldwide view of hepatocellular carcinoma: developments, danger, prevention and administration. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.


    Google Scholar
     

  • Zhou J, Solar H, Wang Z, Cong W, Wang J, Zeng M, et al. Tips for the analysis and remedy of hepatocellular carcinoma. Liver Most cancers. 2020;9(6):682–720.


    Google Scholar
     

  • Basic Workplace of Nationwide Well being Fee. Customary for analysis and remedy standards of main liver most cancers. J Clin Hepatol. 2022;38(2):288.


    Google Scholar
     

  • Sutphin PD, Lamus D, Kalva SP, Li J, Corbin IR. Interventional radiologic therapies for hepatocellular carcinoma: from the place we started to the place we’re going. In: Hoshida Y, editor. Hepatocellular carcinoma: translational precision medication approaches. Cham: Humana Press; 2019. p. 169–94.


    Google Scholar
     

  • Oliveri RS, Wetterslev J, Gluud C. Transarterial (chemo)embolisation for unresectable hepatocellular carcinoma. Cochrane Database Syst Rev. 2011;(3):CD004787

  • Facciorusso A. Drug-eluting beads transarterial chemoembolization for hepatocellular carcinoma: present cutting-edge. World J Gastroenterol. 2018;24(2):161–9.

    CAS 

    Google Scholar
     

  • Lencioni R. Chemoembolization in sufferers with hepatocellular carcinoma. Liver Most cancers. 2012;1(1):41–50.

    CAS 

    Google Scholar
     

  • de Baere T, Arai Y, Lencioni R, Geschwind JF, Rilling W, Salem R, et al. Remedy of liver tumors with lipiodol TACE: technical suggestions from specialists opinion. Cardiovasc Intervent Radiol. 2016;39(3):334–43.


    Google Scholar
     

  • Bzeizi KI, Arabi M, Jamshidi N, Albenmousa A, Sanai FM, Al-Hamoudi W, et al. Standard transarterial chemoembolization versus drug-eluting beads in sufferers with hepatocellular carcinoma: a scientific assessment and meta-analysis. Cancers (Basel). 2021;13(24):6172.


    Google Scholar
     

  • Zhang ZS, Li HZ, Ma C, Xiao YD. Standard versus drug-eluting beads chemoembolization for infiltrative hepatocellular carcinoma: a comparability of efficacy and security. BMC Most cancers. 2019;19(1):1162.

    CAS 

    Google Scholar
     

  • Wu B, Zhou J, Ling G, Zhu D, Lengthy Q. CalliSpheres drug-eluting beads versus lipiodol transarterial chemoembolization within the remedy of hepatocellular carcinoma: a short-term efficacy and security research. World J Surg Oncol. 2018;16(1):69.


    Google Scholar
     

  • Lewis AL, Gonzalez MV, Leppard SW, Brown JE, Stratford PW, Phillips GJ, et al. Doxorubicin eluting beads—1: results of drug loading on bead traits and drug distribution. J Mater Sci Mater Med. 2007;18(9):1691–9.

    CAS 

    Google Scholar
     

  • Solar Z, Li G, Ai X, Luo B, Wen Y, Zhao Z, et al. Hepatic and biliary harm after transarterial chemoembolization for malignant hepatic tumors: incidence, analysis, remedy, final result and mechanism. Crit Rev Oncol Hematol. 2011;79(2):164–74.


    Google Scholar
     

  • Giunchedi P, Maestri M, Gavini E, Dionigi P, Rassu G. Transarterial chemoembolization of hepatocellular carcinoma—brokers and medicines: an summary. Half 2. Professional Opin Drug Deliv. 2013;10(6):799–810.

    CAS 

    Google Scholar
     

  • Vogl TJ, Zangos S, Eichler Okay, Yakoub D, Nabil M. Colorectal liver metastases: regional chemotherapy through transarterial chemoembolization (TACE) and hepatic chemoperfusion: an replace. Eur Radiol. 2007;17(4):1025–34.


    Google Scholar
     

  • Pieper CC, Meyer C, Vollmar B, Hauenstein Okay, Schild HH, Wilhelm KE. Non permanent arterial embolization of liver parenchyma with degradable starch microspheres (EmboCept®S) in a swine mannequin. Cardiovasc Intervent Radiol. 2015;38(2):435–41.


    Google Scholar
     

  • Yavari Okay, Yeganeh E, Abolghasemi H. Manufacturing and characterization of 166Ho polylactic acid microspheres. J Labelled Comp Radiopharm. 2016;59(1):24–9.

    CAS 

    Google Scholar
     

  • Louguet S, Verret V, Bédouet L, Servais E, Pascale F, Wassef M, et al. Poly(ethylene glycol) methacrylate hydrolyzable microspheres for transient vascular embolization. Acta Biomater. 2014;10(3):1194–205.

    CAS 

    Google Scholar
     

  • Sezer AD, Cevher E. Topical drug supply utilizing chitosan nano- and microparticles. Professional Opin Drug Deliv. 2012;9(9):1129–46.

    CAS 

    Google Scholar
     

  • Bai MY, Tang SL, Chuang MH, Wang TY, Hong PD. Analysis of chitosan by-product microparticles encapsulating superparamagnetic iron oxide and doxorubicin as a pH-sensitive supply provider in hepatic carcinoma remedy: an in vitro comparability research. Entrance Pharmacol. 2018;9:1025.


    Google Scholar
     

  • Li FR, Yan WH, Guo YH, Qi H, Zhou HX. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and research on hyperthermia mixed with pharmacotherapy for liver most cancers. Int J Hyperthermia. 2009;25(5):383–91.

    CAS 

    Google Scholar
     

  • Su Y, Zhang B, Solar R, Liu W, Zhu Q, Zhang X, et al. PLGA-based biodegradable microspheres in drug supply: latest advances in analysis and software. Drug Deliv. 2021;28(1):1397–418.

    CAS 

    Google Scholar
     

  • Abdul Rahim R, Jayusman PA, Muhammad N, Ahmad F, Mokhtar N, Naina Mohamed I, et al. Current advances in nanoencapsulation methods utilizing PLGA of bioactive phenolics for cover in opposition to continual ailments. Int J Environ Res Public Well being. 2019;16(24):4962.


    Google Scholar
     

  • Lee SY, Choi JW, Lee JY, Kim DD, Kim HC, Cho HJ. Hyaluronic acid/doxorubicin nanoassembly-releasing microspheres for the transarterial chemoembolization of a liver tumor. Drug Deliv. 2018;25(1):1472–83.

    CAS 

    Google Scholar
     

  • Li X, Liu W, Ye G, Zhang B, Zhu D, Yao Okay, et al. Thermosensitive N-isopropylacrylamide-N-propylacrylamide-vinyl pyrrolidone terpolymers: synthesis, characterization and preliminary software as embolic brokers. Biomaterials. 2005;26(34):7002–11.

    CAS 

    Google Scholar
     

  • Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-sensitive nano-systems for drug supply in most cancers remedy. Biotechnol Adv. 2014;32(4):693–710.

    CAS 

    Google Scholar
     

  • Radu ER, Semenescu A, Voicu SI. Current advances in stimuli-responsive doxorubicin supply methods for liver most cancers remedy. Polymers (Basel). 2022;14(23):5249.

    CAS 

    Google Scholar
     

  • Yang N, Xiao W, Track X, Wang W, Dong X. Current advances in tumor microenvironment hydrogen peroxide-responsive supplies for most cancers photodynamic remedy. Nanomicro Lett. 2020;12(1):15.

    CAS 

    Google Scholar
     

  • Khramtsov VV, Gillies RJ. Janus-faced tumor microenvironment and redox. Antioxid Redox Sign. 2014;21(5):723–9.

    CAS 

    Google Scholar
     

  • Corso CR, Acco A. Glutathione system in animal mannequin of strong tumors: from regulation to therapeutic goal. Crit Rev Oncol Hematol. 2018;128:43–57.


    Google Scholar
     

  • Wang Y, Shang W, Zhong H, Luo T, Niu M, Xu Okay, et al. Tumor vessel focused self-assemble nanoparticles for amplification and prediction of the embolization impact in hepatocellular carcinoma. ACS Nano. 2020;14(11):14907–18.

    CAS 

    Google Scholar
     

  • Yu Y, Cheng Y, Tong J, Zhang L, Wei Y, Tian M. Current advances in thermo-sensitive hydrogels for drug supply. J Mater Chem B. 2021;9(13):2979–92.

    CAS 

    Google Scholar
     

  • Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski WE. Stimulus-responsive “sensible” hydrogels as novel drug supply methods. Drug Dev Ind Pharm. 2002;28(8):957–74.

    CAS 

    Google Scholar
     

  • Alexander A, Khan J, Saraf S, Saraf S. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based mostly thermosensitive injectable hydrogels for biomedical purposes. Eur J Pharm Biopharm. 2014;88(3):575–85.

    CAS 

    Google Scholar
     

  • Huang L, Shen M, Li R, Zhang X, Solar Y, Gao P, et al. Thermo-sensitive composite hydrogels based mostly on poloxamer 407 and alginate and their therapeutic impact in embolization in rabbit VX2 liver tumors. Oncotarget. 2016;7(45):73280–91.


    Google Scholar
     

  • Wei W, Qi X, Liu Y, Li J, Hu X, Zuo G, et al. Synthesis and characterization of a novel pH-thermo twin responsive hydrogel based mostly on salecan and poly(N, N-diethylacrylamide-co-methacrylic acid). Colloids Surf B Biointerfaces. 2015;136:1182–92.

    CAS 

    Google Scholar
     

  • Nguyen PAH, Stapleton L, Ledesma-Mendoza A, Cuylear DL, Cooperstein MA, Canavan HE. Exploring the anomalous cytotoxicity of commercially-available poly(N-isopropyl acrylamide) substrates. Biointerphases. 2018;13(6):06d406.


    Google Scholar
     

  • Drozdov AD. Equilibrium swelling of biocompatible thermo-responsive copolymer gels. Gels. 2021;7(2):40.

    CAS 

    Google Scholar
     

  • Ibrahim-Hashim A, Estrella V. Acidosis and most cancers: from mechanism to neutralization. Most cancers Metastasis Rev. 2019;38(1–2):149–55.

    CAS 

    Google Scholar
     

  • Lym JS, Nguyen QV, da Ahn W, Huynh CT, Jae HJ, Kim YI, et al. Sulfamethazine-based pH-sensitive hydrogels with potential software for transcatheter arterial chemoembolization remedy. Acta Biomater. 2016;41:253–63.

    CAS 

    Google Scholar
     

  • Park W, Chen J, Cho S, Park SJ, Larson AC, Na Okay, et al. Acidic pH-triggered drug-eluting nanocomposites for magnetic resonance imaging-monitored intra-arterial drug supply to hepatocellular carcinoma. ACS Appl Mater Interfaces. 2016;8(20):12711–9.

    CAS 

    Google Scholar
     

  • Sergio A, Cristofori C, Cardin R, Pivetta G, Ragazzi R, Baldan A, et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): the position of angiogenesis and invasiveness. Am J Gastroenterol. 2008;103(4):914–21.


    Google Scholar
     

  • Izzo F, Granata V, Grassi R, Fusco R, Palaia R, Delrio P, et al. Radiofrequency ablation and microwave ablation in liver tumors: an replace. Oncologist. 2019;24(10):e990–1005.


    Google Scholar
     

  • Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Prognosis, staging, and administration of hepatocellular carcinoma: 2018 follow steering by the American affiliation for the research of liver ailments. Hepatology. 2018;68(2):723–50.


    Google Scholar
     

  • Shiina S, Sato Okay, Tateishi R, Shimizu M, Ohama H, Hatanaka T, et al. Percutaneous ablation for hepatocellular carcinoma: comparability of varied ablation strategies and surgical procedure. Can J Gastroenterol Hepatol. 2018;2018:4756147.


    Google Scholar
     

  • Izadifar Z, Izadifar Z, Chapman D, Babyn P. An introduction to excessive depth targeted ultrasound: systematic assessment on rules, units, and medical purposes. J Clin Med. 2020;9(2):460.


    Google Scholar
     

  • You Y, Wang Z, Ran H, Zheng Y, Wang D, Xu J, et al. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for environment friendly most cancers remedy. Nanoscale. 2016;8(7):4324–39.

    CAS 

    Google Scholar
     

  • Chen M, Li J, Shu G, Shen L, Qiao E, Zhang N, et al. Homogenous multifunctional microspheres induce ferroptosis to advertise the anti-hepatocarcinoma impact of chemoembolization. J Nanobiotechnology. 2022;20(1):179.

    CAS 

    Google Scholar
     

  • van der Zee J. Heating the affected person: a promising strategy? Ann Oncol. 2002;13(8):1173–84.


    Google Scholar
     

  • Oei AL, Kok HP, Oei SB, Horsman MR, Stalpers LJA, Franken NAP, et al. Molecular and organic rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Deliv Rev. 2020;163–164:84–97.


    Google Scholar
     

  • Liang YJ, Yu H, Feng G, Zhuang L, Xi W, Ma M, et al. Excessive-performance poly(lactic-co-glycolic acid)-magnetic microspheres ready by rotating membrane emulsification for transcatheter arterial embolization and magnetic ablation in VX(2) liver tumors. ACS Appl Mater Interfaces. 2017;9(50):43478–89.

    CAS 

    Google Scholar
     

  • Zhao P, Zhao J, Deng Y, Zeng G, Jiang Y, Liao L, et al. Software of iron/barium ferrite/carbon-coated iron nanocrystal composites in transcatheter arterial chemoembolization of hepatocellular carcinoma. J Colloid Interface Sci. 2021;601:30–41.

    CAS 

    Google Scholar
     

  • Wang Y, Meng HM, Li Z. Close to-infrared inorganic nanomaterial-based nanosystems for photothermal remedy. Nanoscale. 2021;13(19):8751–72.

    CAS 

    Google Scholar
     

  • Li X, Yuan HJ, Tian XM, Tang J, Liu LF, Liu FY. Biocompatible copper sulfide-based nanocomposites for artery interventional chemo-photothermal remedy of orthotropic hepatocellular carcinoma. Mater At this time Bio. 2021;12: 100128.

    CAS 

    Google Scholar
     

  • Huang D, Dai H, Tang Okay, Chen B, Zhu H, Chen D, et al. A flexible UCST-type composite microsphere for image-guided chemoembolization and photothermal remedy in opposition to liver most cancers. Nanoscale. 2020;12(38):20002–15.

    CAS 

    Google Scholar
     

  • Guarino-Hotz M, Zhang JZ. Structural management and biomedical purposes of plasmonic hole gold nanospheres: a mini assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(4): e1694.

    CAS 

    Google Scholar
     

  • Li J, Zhou M, Liu F, Xiong C, Wang W, Cao Q, et al. Hepatocellular carcinoma: intra-arterial supply of doxorubicin-loaded hole gold nanospheres for photothermal ablation-chemoembolization remedy in rats. Radiology. 2016;281(2):427–35.


    Google Scholar
     

  • Gupta S, Stafford RJ, Javadi S, Ozkan E, Ensor JE, Wright KC, et al. Results of near-infrared laser irradiation of biodegradable microspheres containing hole gold nanospheres and paclitaxel administered intraarterially in a rabbit liver tumor mannequin. J Vasc Interv Radiol. 2012;23(4):553–61.


    Google Scholar
     

  • Tan L, Wang S, Xu Okay, Liu T, Liang P, Niu M, et al. Layered MoS2 hole spheres for highly-efficient photothermal remedy of rabbit liver orthotopic transplantation tumors. Small. 2016;12(15):2046–55.

    CAS 

    Google Scholar
     

  • Nijsen JF, van het Schip AD, Hennink WE, Rook DW, van Rijk PP, de Klerk JM. Advances in nuclear oncology: microspheres for inner radionuclide remedy of liver tumours. Curr Med Chem. 2002;9(1):73–82.

    CAS 

    Google Scholar
     

  • Kallini JR, Gabr A, Thorlund Okay, Balijepalli C, Ayres D, Kanters S, et al. Comparability of the antagonistic occasion profile of therasphere(®) with SIR-spheres(®) for the remedy of unresectable hepatocellular carcinoma: a scientific assessment. Cardiovasc Intervent Radiol. 2017;40(7):1033–43.


    Google Scholar
     

  • Qian Y, Liu Q, Li P, Han Y, Zhang J, Xu J, et al. Extremely tumor-specific and long-acting iodine-131 microbeads for enhanced remedy of hepatocellular carcinoma with low-dose radio-chemoembolization. ACS Nano. 2021;15(2):2933–46.

    CAS 

    Google Scholar
     

  • Ni HC, Yu CY, Chen SJ, Chen LC, Lin CH, Lee WC, et al. Preparation and imaging of rhenium-188 labeled human serum albumin microsphere in orthotopic hepatoma rats. Appl Radiat Isot. 2015;99:117–21.

    CAS 

    Google Scholar
     

  • Vanpouille-Field C, Lacoeuille F, Roux J, Aubé C, Garcion E, Lepareur N, et al. Lipid nanocapsules loaded with rhenium-188 scale back tumor development in a rat hepatocellular carcinoma mannequin. PLoS ONE. 2011;6(3): e16926.

    CAS 

    Google Scholar
     

  • Weber M, Lam M, Chiesa C, Konijnenberg M, Cremonesi M, Flamen P, et al. EANM process guideline for the remedy of liver most cancers and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2022;49(5):1682–99.

    CAS 

    Google Scholar
     

  • Kim SP, Cohalan C, Kopek N, Enger SA. A information to (90)Y radioembolization and its dosimetry. Phys Med. 2019;68:132–45.


    Google Scholar
     

  • Hickey RM, Lewandowski RJ, Salem R. Yttrium-90 radioembolization for hepatocellular carcinoma. Semin Nucl Med. 2016;46(2):105–8.


    Google Scholar
     

  • d’Abadie P, Hesse M, Louppe A, Lhommel R, Walrand S, Jamar F. Microspheres utilized in liver radioembolization: from conception to medical results. Molecules. 2021;26(13):3966.

    CAS 

    Google Scholar
     

  • Howerton L. Yttrium 90 radioembolization for hepatocellular carcinoma. Radiol Technol. 2021;93(2):197–215.


    Google Scholar
     

  • Reinders MTM, Smits MLJ, van Roekel C, Braat A. Holmium-166 microsphere radioembolization of hepatic malignancies. Semin Nucl Med. 2019;49(3):237–43.


    Google Scholar
     

  • Prince JF, van den Bosch M, Nijsen JFW, Smits MLJ, van den Hoven AF, Nikolakopoulos S, et al. Efficacy of radioembolization with (166)Ho-microspheres in salvage sufferers with liver metastases: a part 2 research. J Nucl Med. 2018;59(4):582–8.

    CAS 

    Google Scholar
     

  • Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA, Mali WP, et al. Holmium-166 radioembolisation in sufferers with unresectable, chemorefractory liver metastases (HEPAR trial): a part 1, dose-escalation research. Lancet Oncol. 2012;13(10):1025–34.

    CAS 

    Google Scholar
     

  • Braat A, Bruijnen RCG, van Rooij R, Braat M, Wessels FJ, van Leeuwaarde RS, et al. Further holmium-166 radioembolisation after lutetium-177-dotatate in sufferers with neuroendocrine tumour liver metastases (HEPAR PLuS): a single-centre, single-arm, open-label, part 2 research. Lancet Oncol. 2020;21(4):561–70.

    CAS 

    Google Scholar
     

  • van den Hoven AF, Prince JF, Bruijnen RC, Verkooijen HM, Krijger GC, Lam MG, et al. Surefire infusion system versus normal microcatheter use throughout holmium-166 radioembolization: research protocol for a randomized managed trial. Trials. 2016;17(1):520.


    Google Scholar
     

  • Li R, Li D, Jia G, Li X, Solar G, Zuo C. Diagnostic efficiency of theranostic radionuclides utilized in transarterial radioembolization for liver most cancers. Entrance Oncol. 2020;10: 551622.


    Google Scholar
     

  • Jouneau S, Vauléon E, Caulet-Maugendre S, Polard E, Volatron AC, Meunier C, et al. 131I-labeled lipiodol-induced interstitial pneumonia: a sequence of 15 circumstances. Chest. 2011;139(6):1463–9.


    Google Scholar
     

  • De La Vega JC, Esquinas PL, Rodríguez-Rodríguez C, Bokharaei M, Moskalev I, Liu D, et al. Radioembolization of hepatocellular carcinoma with built-in dosimetry: first in vivo outcomes with uniformly-sized, biodegradable microspheres labeled with (188)Re. Theranostics. 2019;9(3):868–83.


    Google Scholar
     

  • Pillai MR, Sprint A, Knapp FF Jr. Rhenium-188: availability from the (188)W/(188)Re generator and standing of present purposes. Curr Radiopharm. 2012;5(3):228–43.

    CAS 

    Google Scholar
     

  • Poll S, Noiret N, Hindré F, Denizot B, Garin E, Rajerison H, et al. 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and remedy: formulation and biodistribution. Eur J Nucl Med Mol Imaging. 2006;33(5):602–7.

    CAS 

    Google Scholar
     

  • Wu M, Shi Okay, Huang R, Liu C, Yin L, Yong W, et al. Facile preparation of 177Lu-microspheres for hepatocellular carcinoma radioisotope remedy. Chin Chem Lett. 2022;33(7):3492–6.

    CAS 

    Google Scholar
     

  • Delaunay Okay, Edeline J, Rolland Y, Lepareur N, Laffont S, Palard X, et al. Preliminary outcomes of the part 1 Lip-Re I medical trial: biodistribution and dosimetry assessments in hepatocellular carcinoma sufferers handled with 188Re-SSS Lipiodol radioembolization. Eur J Nucl Med Mol Imaging. 2019;46(7):1506–17.

    CAS 

    Google Scholar
     

  • Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medication for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616.


    Google Scholar
     

  • Gordan JD, Kennedy EB, Abou-Alfa GK, Beg MS, Brower ST, Gade TP, et al. Systemic remedy for superior hepatocellular carcinoma: ASCO guideline. J Clin Oncol. 2020;38(36):4317–45.

    CAS 

    Google Scholar
     

  • Rimassa L, Danesi R, Pressiani T, Merle P. Administration of antagonistic occasions related to tyrosine kinase inhibitors: enhancing outcomes for sufferers with hepatocellular carcinoma. Most cancers Deal with Rev. 2019;77:20–8.

    CAS 

    Google Scholar
     

  • Jia ZZ, Jiang GM, Feng YL. Serum HIF-1alpha and VEGF ranges pre- and post-TACE in sufferers with main liver most cancers. Chin Med Sci J. 2011;26(3):158–62.

    CAS 

    Google Scholar
     

  • Adnane L, Path PA, Taylor I, Wilhelm SM. Sorafenib (BAY 43–9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Strategies Enzymol. 2006;407:597–612.

    CAS 

    Google Scholar
     

  • Park W, Cho S, Ji J, Lewandowski RJ, Larson AC, Kim DH. Growth and validation of sorafenib-eluting microspheres to reinforce therapeutic efficacy of transcatheter arterial chemoembolization in a rat mannequin of hepatocellular carcinoma. Radiol Imaging Most cancers. 2021;3(1): e200006.


    Google Scholar
     

  • Duran R, Namur J, Pascale F, Czuczman P, Bascal Z, Kilpatrick H, et al. Vandetanib-eluting radiopaque beads: pharmacokinetics, security, and efficacy in a rabbit mannequin of liver most cancers. Radiology. 2019;293(3):695–703.


    Google Scholar
     

  • Fuchs Okay, Bize PE, Dormond O, Denys A, Doelker E, Borchard G, et al. Drug-eluting beads loaded with antiangiogenic brokers for chemoembolization: in vitro sunitinib loading and launch and in vivo pharmacokinetics in an animal mannequin. J Vasc Interv Radiol. 2014;25(3):379-87.e1-2.


    Google Scholar
     

  • Zhang A, Xiao Z, Liu Q, Li P, Xu F, Liu J, et al. CaCO(3) -encapuslated microspheres for enhanced transhepatic arterial embolization remedy of hepatocellular carcinoma. Adv Healthc Mater. 2021;10(19): e2100748.


    Google Scholar
     

  • Choi JW, Lee SY, Cho EJ, Jeong DI, Kim DD, Kim HC, et al. Gasoline producing microspheres for instant launch of Hsp90 inhibitor aiming at postembolization hypoxia in transarterial chemoembolization remedy of hepatocellular carcinoma. Int J Pharm. 2021;607: 120988.

    CAS 

    Google Scholar
     

  • Chen M, Xu X, Shu G, Lu C, Wu J, Lv X, et al. Multifunctional microspheres dual-loaded with doxorubicin and sodium bicarbonate nanoparticles to introduce synergistic trimodal interventional remedy. ACS Appl Bio Mater. 2021;4(4):3476–89.

    CAS 

    Google Scholar
     

  • Bao MH, Wong CC. Hypoxia, metabolic reprogramming, and drug resistance in liver most cancers. Cells. 2021;10(7):1715.

    CAS 

    Google Scholar
     

  • Liu Q, Solar JD, Wang J, Ahluwalia D, Baker AF, Cranmer LD, et al. TH-302, a hypoxia-activated prodrug with broad in vivo preclinical mixture remedy efficacy: optimization of dosing regimens and schedules. Most cancers Chemother Pharmacol. 2012;69(6):1487–98.

    CAS 

    Google Scholar
     

  • Ma P, Chen J, Qu H, Li Y, Li X, Tang X, et al. Hypoxic focusing on and activating TH-302 loaded transcatheter arterial embolization microsphere. Drug Deliv. 2020;27(1):1412–24.

    CAS 

    Google Scholar
     

  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR impact and past: methods to enhance tumor focusing on and most cancers nanomedicine remedy efficacy. Theranostics. 2020;10(17):7921–4.


    Google Scholar
     

  • Chen J, White SB, Harris KR, Li W, Yap JW, Kim DH, et al. Poly(lactide-co-glycolide) microspheres for MRI-monitored supply of sorafenib in a rabbit VX2 mannequin. Biomaterials. 2015;61:299–306.

    CAS 

    Google Scholar
     

  • Kim DH, Chen J, Omary RA, Larson AC. MRI seen drug eluting magnetic microspheres for transcatheter intra-arterial supply to liver tumors. Theranostics. 2015;5(5):477–88.

    CAS 

    Google Scholar
     

  • Wang YX, Zhu XM, Liang Q, Cheng CH, Wang W, Leung KC. In vivo chemoembolization and magnetic resonance imaging of liver tumors by utilizing iron oxide nanoshell/doxorubicin/poly(vinyl alcohol) hybrid composites. Angew Chem Int Ed Engl. 2014;53(19):4812–5.

    CAS 

    Google Scholar
     

  • van Elk M, Ozbakir B, Barten-Rijbroek AD, Storm G, Nijsen F, Hennink WE, et al. Alginate microspheres containing temperature delicate liposomes (TSL) for MR-guided embolization and triggered launch of doxorubicin. PLoS ONE. 2015;10(11): e0141626.


    Google Scholar
     

  • Wang Q, Xiao A, Liu Y, Zou Q, Zhou Q, Wang H, et al. One-step preparation of nano-in-micro poly(vinyl alcohol) embolic microspheres and used for dual-modal T(1)/T(2)-weighted magnetic resonance imaging. Nanomedicine. 2018;14(8):2551–61.

    CAS 

    Google Scholar
     

  • Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, et al. Drug-loaded superparamagnetic iron oxide nanoparticles for mixed most cancers imaging and remedy in vivo. Angew Chem Int Ed Engl. 2008;47(29):5362–5.

    CAS 

    Google Scholar
     

  • Choi JW, Park JH, Cho HR, Chung JW, Kim DD, Kim HC, et al. Sorafenib and a couple of,3,5-triiodobenzoic acid-loaded imageable microspheres for transarterial embolization of a liver tumor. Sci Rep. 2017;7(1):554.


    Google Scholar
     

  • Bonitatibus PJ Jr, Torres AS, Goddard GD, FitzGerald PF, Kulkarni AM. Synthesis, characterization, and computed tomography imaging of a tantalum oxide nanoparticle imaging agent. Chem Commun (Camb). 2010;46(47):8956–8.

    CAS 

    Google Scholar
     

  • Zeng J, Li L, Zhang H, Li J, Liu L, Zhou G, et al. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging throughout transcatheter arterial embolization. Theranostics. 2018;8(17):4591–600.

    CAS 

    Google Scholar
     

  • Tang S, Fu C, Tan L, Liu T, Mao J, Ren X, et al. Imaging-guided synergetic remedy of orthotopic transplantation tumor by superselectively arterial administration of microwave-induced microcapsules. Biomaterials. 2017;133:144–53.

    CAS 

    Google Scholar
     

  • Wei C, Wu C, Jin X, Yin P, Yu X, Wang C, et al. CT/MR detectable magnetic microspheres for self-regulating temperature hyperthermia and transcatheter arterial chemoembolization. Acta Biomater. 2022;153:453–64.

    CAS 

    Google Scholar
     

  • Wang D, Wu Q, Guo R, Lu C, Niu M, Rao W. Magnetic liquid steel loaded nano-in-micro spheres as absolutely versatile theranostic brokers for SMART embolization. Nanoscale. 2021;13(19):8817–36.

    CAS 

    Google Scholar
     

  • Klaassen NJM, Arntz MJ, Gil Arranja A, Roosen J, Nijsen JFW. The assorted therapeutic purposes of the medical isotope holmium-166: a story assessment. EJNMMI Radiopharm Chem. 2019;4(1):19.


    Google Scholar
     

  • About the author

    admin

    Leave a Comment